File size: 7,912 Bytes
e0fcf03
 
 
 
 
 
2bde947
e0fcf03
 
 
 
 
 
 
 
2bde947
e0fcf03
 
 
 
 
 
 
 
 
 
 
 
f558e96
e0fcf03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bde947
e0fcf03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bde947
 
 
 
 
 
 
e0fcf03
 
 
1ef50c2
 
 
 
2bde947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0fcf03
 
 
 
2bde947
e0fcf03
 
 
2bde947
 
 
e0fcf03
2bde947
e0fcf03
 
2bde947
e0fcf03
 
 
2bde947
e0fcf03
 
 
 
 
2bde947
 
 
 
 
e0fcf03
2bde947
e0fcf03
 
 
2bde947
b267b22
e0fcf03
 
 
2bde947
 
e0fcf03
2bde947
 
 
 
e0fcf03
2bde947
 
 
e0fcf03
 
 
 
2bde947
 
e0fcf03
 
 
 
 
 
 
2bde947
e0fcf03
 
 
 
 
2bde947
e0fcf03
 
 
 
2bde947
e0fcf03
 
2bde947
e0fcf03
 
 
 
 
 
 
 
 
2bde947
e0fcf03
2bde947
 
e0fcf03
 
 
1ef50c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import cv2
import numpy as np
import torch
from ultralytics import YOLO
import gradio as gr
from scipy.interpolate import interp1d
import plotly.graph_objects as go
import uuid
import os
import tempfile

# Load YOLOv8 model and resolve class index
model = YOLO("best.pt")
model.to('cuda' if torch.cuda.is_available() else 'cpu')

# Dynamically resolve ball class index
ball_class_index = None
for k, v in model.names.items():
    if v.lower() == "cricketball":
        ball_class_index = k
        break
if ball_class_index is None:
    raise ValueError("Class 'cricketBall' not found in model.names")

# Constants
STUMPS_WIDTH = 0.2286
BALL_DIAMETER = 0.073
FRAME_RATE = 20
SLOW_MOTION_FACTOR = 2
CONF_THRESHOLD = 0.2
IMPACT_ZONE_Y = 0.85
IMPACT_DELTA_Y = 50
PITCH_LENGTH = 20.12
STUMPS_HEIGHT = 0.71
MAX_POSITION_JUMP = 30

def process_video(video_path):
    if not os.path.exists(video_path):
        return [], [], [], "Error: Video file not found"
    cap = cv2.VideoCapture(video_path)
    frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    frames, ball_positions, detection_frames, debug_log = [], [], [], []
    frame_count = 0

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        frame_count += 1
        frames.append(frame.copy())
        results = model.predict(frame, conf=CONF_THRESHOLD, imgsz=(frame_height, frame_width), iou=0.5, max_det=1)
        detections = 0
        for detection in results[0].boxes:
            if int(detection.cls) == ball_class_index:
                detections += 1
                if detections == 1:
                    x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy()
                    ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
                    detection_frames.append(frame_count - 1)
                    cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
        frames[-1] = frame
        debug_log.append(f"Frame {frame_count}: {detections} ball detections")
    cap.release()

    if not ball_positions:
        debug_log.append("No balls detected in any frame")
    else:
        debug_log.append(f"Total ball detections: {len(ball_positions)}")
        debug_log.append(f"Video resolution: {frame_width}x{frame_height}")

    return frames, ball_positions, detection_frames, "\n".join(debug_log)

def find_bounce_point(ball_coords):
    for i in range(1, len(ball_coords) - 1):
        if ball_coords[i-1][1] < ball_coords[i][1] > ball_coords[i+1][1]:
            return ball_coords[i]
    return ball_coords[len(ball_coords)//3]  # fallback

def lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point):
    if not frames or not trajectory or len(ball_positions) < 2:
        return "Not enough data", trajectory, pitch_point, impact_point

    frame_height, frame_width = frames[0].shape[:2]
    stumps_x = frame_width / 2
    stumps_y = frame_height * 0.9
    stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)

    pitch_x, _ = pitch_point
    impact_x, impact_y = impact_point

    if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
        return f"Not Out (Pitched outside line)", trajectory, pitch_point, impact_point
    if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
        return f"Not Out (Impact outside line)", trajectory, pitch_point, impact_point
    for x, y in trajectory:
        if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
            return f"Out (Ball projected to hit stumps)", trajectory, pitch_point, impact_point
    return f"Not Out (Missing stumps)", trajectory, pitch_point, impact_point

def estimate_trajectory(ball_positions, detection_frames, frame_height, frame_width):
    if len(ball_positions) < 2:
        return None, None, None, "Error: Not enough ball detections"

    filtered_positions = [ball_positions[0]]
    filtered_frames = [detection_frames[0]]
    for i in range(1, len(ball_positions)):
        prev, curr = filtered_positions[-1], ball_positions[i]
        if np.linalg.norm(np.array(curr) - np.array(prev)) <= MAX_POSITION_JUMP:
            filtered_positions.append(curr)
            filtered_frames.append(detection_frames[i])

    if len(filtered_positions) < 2:
        return None, None, None, "Error: Filtered detections too few"

    x_vals = [p[0] for p in filtered_positions]
    y_vals = [p[1] for p in filtered_positions]
    times = np.array(filtered_frames) / FRAME_RATE

    try:
        fx = interp1d(times, x_vals, kind='cubic', fill_value="extrapolate")
        fy = interp1d(times, y_vals, kind='cubic', fill_value="extrapolate")
    except Exception as e:
        return None, None, None, f"Interpolation error: {str(e)}"

    total_frames = max(filtered_frames) - min(filtered_frames) + 1
    t_full = np.linspace(times[0], times[-1], max(5, total_frames * SLOW_MOTION_FACTOR))
    x_full = fx(t_full)
    y_full = fy(t_full)
    trajectory = list(zip(x_full, y_full))

    pitch_point = find_bounce_point(filtered_positions)
    impact_point = filtered_positions[-1]

    return trajectory, pitch_point, impact_point, "Trajectory estimated successfully"

def generate_replay(frames, trajectory, pitch_point, impact_point, detection_frames):
    if not frames or not trajectory:
        return None

    temp_file = os.path.join(tempfile.gettempdir(), f"drs_output_{uuid.uuid4()}.mp4")
    height, width = frames[0].shape[:2]
    out = cv2.VideoWriter(temp_file, cv2.VideoWriter_fourcc(*'mp4v'), FRAME_RATE / SLOW_MOTION_FACTOR, (width, height))

    min_frame = min(detection_frames)
    max_frame = max(detection_frames)
    total_frames = max_frame - min_frame + 1
    traj_per_frame = max(1, len(trajectory) // total_frames)
    indices = [min(i * traj_per_frame, len(trajectory)-1) for i in range(total_frames)]

    for i, frame in enumerate(frames):
        idx = i - min_frame
        if 0 <= idx < len(indices):
            end_idx = indices[idx]
            points = np.array(trajectory[:end_idx+1], dtype=np.int32).reshape((-1, 1, 2))
            cv2.polylines(frame, [points], False, (255, 0, 0), 2)
        if pitch_point and i == detection_frames[0]:
            cv2.circle(frame, tuple(map(int, pitch_point)), 6, (0, 0, 255), -1)
        if impact_point and i == detection_frames[-1]:
            cv2.circle(frame, tuple(map(int, impact_point)), 6, (0, 255, 255), -1)
        for _ in range(SLOW_MOTION_FACTOR):
            out.write(frame)
    out.release()
    return temp_file

def drs_review(video):
    frames, ball_positions, detection_frames, debug_log = process_video(video)
    if not frames or not ball_positions:
        return "No frames or detections found.", None

    frame_height, frame_width = frames[0].shape[:2]
    trajectory, pitch_point, impact_point, log = estimate_trajectory(ball_positions, detection_frames, frame_height, frame_width)
    if not trajectory:
        return f"{log}\n{debug_log}", None

    decision, _, _, _ = lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point)
    replay_path = generate_replay(frames, trajectory, pitch_point, impact_point, detection_frames)

    result_log = f"DRS Decision: {decision}\n\n{log}\n\n{debug_log}"
    return result_log, replay_path

# Gradio Interface
iface = gr.Interface(
    fn=drs_review,
    inputs=gr.Video(label="Upload Cricket Delivery Video"),
    outputs=[
        gr.Textbox(label="DRS Result and Debug Info"),
        gr.Video(label="Replay with Trajectory & Decision")
    ],
    title="GullyDRS - AI-Powered LBW Review",
    description="Upload a cricket delivery video. The system will track the ball, estimate trajectory, and return a replay with an OUT/NOT OUT decision."
)

if __name__ == "__main__":
    iface.launch()