import cv2 import numpy as np import torch from ultralytics import YOLO import gradio as gr from scipy.interpolate import interp1d import plotly.graph_objects as go import uuid import os import tempfile # Load YOLOv8 model and resolve class index model = YOLO("best.pt") model.to('cuda' if torch.cuda.is_available() else 'cpu') # Dynamically resolve ball class index ball_class_index = None for k, v in model.names.items(): if v.lower() == "cricketball": ball_class_index = k break if ball_class_index is None: raise ValueError("Class 'cricketBall' not found in model.names") # Constants STUMPS_WIDTH = 0.2286 BALL_DIAMETER = 0.073 FRAME_RATE = 20 SLOW_MOTION_FACTOR = 2 CONF_THRESHOLD = 0.2 IMPACT_ZONE_Y = 0.85 IMPACT_DELTA_Y = 50 PITCH_LENGTH = 20.12 STUMPS_HEIGHT = 0.71 MAX_POSITION_JUMP = 30 def process_video(video_path): if not os.path.exists(video_path): return [], [], [], "Error: Video file not found" cap = cv2.VideoCapture(video_path) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) frames, ball_positions, detection_frames, debug_log = [], [], [], [] frame_count = 0 while cap.isOpened(): ret, frame = cap.read() if not ret: break frame_count += 1 frames.append(frame.copy()) results = model.predict(frame, conf=CONF_THRESHOLD, imgsz=(frame_height, frame_width), iou=0.5, max_det=1) detections = 0 for detection in results[0].boxes: if int(detection.cls) == ball_class_index: detections += 1 if detections == 1: x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy() ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2]) detection_frames.append(frame_count - 1) cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2) frames[-1] = frame debug_log.append(f"Frame {frame_count}: {detections} ball detections") cap.release() if not ball_positions: debug_log.append("No balls detected in any frame") else: debug_log.append(f"Total ball detections: {len(ball_positions)}") debug_log.append(f"Video resolution: {frame_width}x{frame_height}") return frames, ball_positions, detection_frames, "\n".join(debug_log) def find_bounce_point(ball_coords): for i in range(1, len(ball_coords) - 1): if ball_coords[i-1][1] < ball_coords[i][1] > ball_coords[i+1][1]: return ball_coords[i] return ball_coords[len(ball_coords)//3] # fallback def lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point): if not frames or not trajectory or len(ball_positions) < 2: return "Not enough data", trajectory, pitch_point, impact_point frame_height, frame_width = frames[0].shape[:2] stumps_x = frame_width / 2 stumps_y = frame_height * 0.9 stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0) pitch_x, _ = pitch_point impact_x, impact_y = impact_point if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2: return f"Not Out (Pitched outside line)", trajectory, pitch_point, impact_point if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2: return f"Not Out (Impact outside line)", trajectory, pitch_point, impact_point for x, y in trajectory: if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1: return f"Out (Ball projected to hit stumps)", trajectory, pitch_point, impact_point return f"Not Out (Missing stumps)", trajectory, pitch_point, impact_point def estimate_trajectory(ball_positions, detection_frames, frame_height, frame_width): if len(ball_positions) < 2: return None, None, None, "Error: Not enough ball detections" filtered_positions = [ball_positions[0]] filtered_frames = [detection_frames[0]] for i in range(1, len(ball_positions)): prev, curr = filtered_positions[-1], ball_positions[i] if np.linalg.norm(np.array(curr) - np.array(prev)) <= MAX_POSITION_JUMP: filtered_positions.append(curr) filtered_frames.append(detection_frames[i]) if len(filtered_positions) < 2: return None, None, None, "Error: Filtered detections too few" x_vals = [p[0] for p in filtered_positions] y_vals = [p[1] for p in filtered_positions] times = np.array(filtered_frames) / FRAME_RATE try: fx = interp1d(times, x_vals, kind='cubic', fill_value="extrapolate") fy = interp1d(times, y_vals, kind='cubic', fill_value="extrapolate") except Exception as e: return None, None, None, f"Interpolation error: {str(e)}" total_frames = max(filtered_frames) - min(filtered_frames) + 1 t_full = np.linspace(times[0], times[-1], max(5, total_frames * SLOW_MOTION_FACTOR)) x_full = fx(t_full) y_full = fy(t_full) trajectory = list(zip(x_full, y_full)) pitch_point = find_bounce_point(filtered_positions) impact_point = filtered_positions[-1] return trajectory, pitch_point, impact_point, "Trajectory estimated successfully" def generate_replay(frames, trajectory, pitch_point, impact_point, detection_frames): if not frames or not trajectory: return None temp_file = os.path.join(tempfile.gettempdir(), f"drs_output_{uuid.uuid4()}.mp4") height, width = frames[0].shape[:2] out = cv2.VideoWriter(temp_file, cv2.VideoWriter_fourcc(*'mp4v'), FRAME_RATE / SLOW_MOTION_FACTOR, (width, height)) min_frame = min(detection_frames) max_frame = max(detection_frames) total_frames = max_frame - min_frame + 1 traj_per_frame = max(1, len(trajectory) // total_frames) indices = [min(i * traj_per_frame, len(trajectory)-1) for i in range(total_frames)] for i, frame in enumerate(frames): idx = i - min_frame if 0 <= idx < len(indices): end_idx = indices[idx] points = np.array(trajectory[:end_idx+1], dtype=np.int32).reshape((-1, 1, 2)) cv2.polylines(frame, [points], False, (255, 0, 0), 2) if pitch_point and i == detection_frames[0]: cv2.circle(frame, tuple(map(int, pitch_point)), 6, (0, 0, 255), -1) if impact_point and i == detection_frames[-1]: cv2.circle(frame, tuple(map(int, impact_point)), 6, (0, 255, 255), -1) for _ in range(SLOW_MOTION_FACTOR): out.write(frame) out.release() return temp_file def drs_review(video): frames, ball_positions, detection_frames, debug_log = process_video(video) if not frames or not ball_positions: return "No frames or detections found.", None frame_height, frame_width = frames[0].shape[:2] trajectory, pitch_point, impact_point, log = estimate_trajectory(ball_positions, detection_frames, frame_height, frame_width) if not trajectory: return f"{log}\n{debug_log}", None decision, _, _, _ = lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point) replay_path = generate_replay(frames, trajectory, pitch_point, impact_point, detection_frames) result_log = f"DRS Decision: {decision}\n\n{log}\n\n{debug_log}" return result_log, replay_path # Gradio Interface iface = gr.Interface( fn=drs_review, inputs=gr.Video(label="Upload Cricket Delivery Video"), outputs=[ gr.Textbox(label="DRS Result and Debug Info"), gr.Video(label="Replay with Trajectory & Decision") ], title="GullyDRS - AI-Powered LBW Review", description="Upload a cricket delivery video. The system will track the ball, estimate trajectory, and return a replay with an OUT/NOT OUT decision." ) if __name__ == "__main__": iface.launch()