File size: 23,810 Bytes
4b82103
ea55c2f
4b82103
 
563cd8f
c8f2cda
563cd8f
647c06f
 
 
 
14faef4
4b82103
 
 
 
 
 
a540810
8f3d527
 
 
 
4b82103
1af5b00
 
 
c8f2cda
1af5b00
aead505
 
647c06f
aead505
 
1af5b00
c8f2cda
 
 
aead505
1af5b00
 
 
6c3ee62
1af5b00
 
14faef4
 
 
 
1af5b00
 
 
 
 
 
 
 
 
4b82103
14faef4
1af5b00
 
 
 
14faef4
 
 
 
 
 
 
563cd8f
14faef4
 
 
 
 
 
 
 
 
 
563cd8f
14faef4
 
 
 
 
 
 
 
 
 
 
 
563cd8f
14faef4
 
563cd8f
 
14faef4
 
 
563cd8f
14faef4
563cd8f
14faef4
 
 
 
 
 
 
563cd8f
 
14faef4
 
 
563cd8f
4b82103
 
 
 
 
 
 
 
 
 
563cd8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b82103
563cd8f
4b82103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14faef4
4b82103
14faef4
 
4b82103
 
 
 
 
 
 
 
835b688
 
 
 
 
 
 
 
4b82103
 
 
e5b3bf0
 
4b82103
 
 
 
 
 
 
 
 
 
 
563cd8f
 
 
 
 
 
 
 
 
 
 
 
 
 
4b82103
 
 
 
 
563cd8f
c5e68f9
1af5b00
 
a540810
563cd8f
 
 
647c06f
1af5b00
 
 
 
 
 
 
 
 
 
14faef4
1af5b00
 
14faef4
1af5b00
 
563cd8f
 
a540810
647c06f
 
 
 
c5e68f9
647c06f
c5e68f9
 
 
 
647c06f
c5e68f9
 
 
 
 
 
 
 
14faef4
c5e68f9
 
 
647c06f
c5e68f9
 
 
 
 
168c5bf
 
 
 
aead505
168c5bf
 
 
aead505
 
 
c5e68f9
647c06f
 
14faef4
aead505
c5e68f9
 
 
a540810
aead505
1af5b00
a540810
48e31af
 
 
 
 
 
 
 
 
 
 
 
 
4b82103
48e31af
 
 
 
 
4b82103
48e31af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b82103
 
 
 
 
 
 
 
 
 
14faef4
 
 
 
4b82103
 
14faef4
4b82103
14faef4
4b82103
8f3d527
4b82103
14faef4
 
 
 
563cd8f
 
14faef4
 
 
 
 
647c06f
14faef4
 
 
 
 
 
 
 
 
 
4b82103
14faef4
 
 
 
 
4b82103
14faef4
 
 
 
 
 
 
4b82103
14faef4
 
1af5b00
14faef4
 
e5b3bf0
 
 
14faef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
563cd8f
 
 
 
 
 
 
14faef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import streamlit as st
import streamlit.components.v1 as components
import pandas as pd
import matplotlib.pyplot as plt
import plotly.figure_factory as ff
import os
from datetime import datetime, timedelta
import json
import requests
import base64
import logging
from model import predict_delay, get_weather_condition
from utils import validate_inputs, generate_heatmap
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.units import inch
from io import BytesIO
from simple_salesforce import Salesforce

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Streamlit app configuration
st.set_page_config(page_title="Delay 🚀", layout="wide")

# Salesforce connection (using environment variables)
try:
    sf_instance_url = os.environ.get("SF_INSTANCE_URL")
    if not sf_instance_url:
        raise ValueError("SF_INSTANCE_URL environment variable not set")
    if "lightning.force.com" in sf_instance_url:
        logger.warning("SF_INSTANCE_URL contains lightning.force.com; consider using my.salesforce.com for reliable PDF downloads")
    sf = Salesforce(
        username=os.environ.get("SF_USERNAME"),
        password=os.environ.get("SF_PASSWORD"),
        security_token=os.environ.get("SF_SECURITY_TOKEN"),
        instance_url=sf_instance_url
    )
except Exception as e:
    st.error(f"Failed to connect to Salesforce: {str(e)}")
    logger.error(f"Salesforce connection failed: {str(e)}")
    sf = None

# Weather API configuration
WEATHER_API_KEY = os.environ.get("WEATHER_API_KEY")
WEATHER_API_URL = "http://api.openweathermap.org/data/2.5/forecast"

# Title
st.title("Project Delay Predictor 🚀")

# Task options per phase
task_options = {
    "Planning": ["Define Scope", "Resource Allocation", "Permit Acquisition"],
    "Design": ["Architectural Drafting", "Engineering Analysis", "Design Review"],
    "Construction": ["Foundation Work", "Structural Build", "Utility Installation"]
}

# Initialize session state
if 'phase' not in st.session_state:
    st.session_state.phase = ""
if 'task' not in st.session_state:
    st.session_state.task = ""
if 'weather_data' not in st.session_state:
    st.session_state.weather_data = None

# Function to fetch weather data
def fetch_weather_data(project_location, date):
    if not WEATHER_API_KEY:
        logger.error("WEATHER_API_KEY not set")
        return None, {"error": "Weather API key not set. Please provide a valid API key."}
    try:
        params = {
            "q": project_location,
            "appid": WEATHER_API_KEY,
            "units": "metric"
        }
        response = requests.get(WEATHER_API_URL, params=params)
        response.raise_for_status()
        data = response.json()
        
        # Find the closest forecast to the target date
        target_date = datetime.strptime(date, "%Y-%m-%d")
        closest_forecast = None
        min_time_diff = float('inf')
        
        for forecast in data['list']:
            forecast_time = datetime.fromtimestamp(forecast['dt'])
            time_diff = abs((forecast_time - target_date).total_seconds())
            if time_diff < min_time_diff:
                min_time_diff = time_diff
                closest_forecast = forecast
        
        if not closest_forecast:
            return None, {"error": "No forecast available for the specified date."}
        
        # Map weather conditions to impact score
        weather_main = forecast['weather'][0]['main'].lower()
        impact_score = 50  # Default
        if 'clear' in weather_main:
            impact_score = 10
        elif 'clouds' in weather_main:
            impact_score = 30 if forecast['clouds']['all'] < 50 else 50
        elif 'rain' in weather_main:
            impact_score = 70 if forecast['rain'].get('3h', 0) < 2.5 else 85
        elif 'storm' in weather_main or 'thunderstorm' in weather_main:
            impact_score = 90
        
        weather_condition = get_weather_condition(impact_score)
        return {
            "weather_impact_score": impact_score,
            "weather_condition": weather_condition,
            "temperature": forecast['main']['temp'],
            "humidity": forecast['main']['humidity']
        }, None
    except Exception as e:
        logger.error(f"Failed to fetch weather data: {str(e)}")
        return None, {"error": f"Failed to fetch weather data for {project_location}: {str(e)}"}

# Function to format high_risk_phases with flag and alert
def format_high_risk_phases(high_risk_phases):
    formatted = []
    for phase in high_risk_phases:
        flag = "🚩" if phase['risk'] > 75 else ""
        alert = "[Alert]" if phase['risk'] > 75 else ""
        formatted.append(f"{flag} {phase['phase']}: {phase['task']} (Risk: {phase['risk']:.1f}%) {alert}")
    return formatted

# Function to generate Gantt chart
def generate_gantt_chart(input_data, prediction):
    try:
        phase = input_data["phase"]
        task = input_data["task"]
        expected_duration = input_data["task_expected_duration"]
        actual_duration = input_data["task_actual_duration"]
        forecast_date = datetime.strptime(input_data["weather_forecast_date"], "%Y-%m-%d")
        delay_risk = prediction["delay_probability"]

        # Calculate start and end dates
        start_date = forecast_date - timedelta(days=max(expected_duration, actual_duration))
        expected_end = start_date + timedelta(days=expected_duration)
        actual_end = start_date + timedelta(days=actual_duration) if actual_duration > 0 else expected_end

        # Prepare Gantt chart data
        df = [
            dict(Task=f"{phase}: {task} (Expected)", Start=start_date.strftime("%Y-%m-%d"), Finish=expected_end.strftime("%Y-%m-%d"), Resource="Expected", Risk=delay_risk),
            dict(Task=f"{phase}: {task} (Actual)", Start=start_date.strftime("%Y-%m-%d"), Finish=actual_end.strftime("%Y-%m-%d"), Resource="Actual", Risk=delay_risk)
        ]

        # Color based on delay risk
        colors = {
            "Expected": "rgb(0, 255, 0)" if delay_risk <= 50 else "rgb(255, 255, 0)" if delay_risk <= 75 else "rgb(255, 0, 0)",
            "Actual": "rgb(0, 200, 0)" if delay_risk <= 50 else "rgb(200, 200, 0)" if delay_risk <= 75 else "rgb(200, 0, 0)"
        }

        # Create Gantt chart
        fig = ff.create_gantt(
            df,
            colors=colors,
            index_col="Resource",
            title=f"Gantt Chart for {phase}: {task}",
            show_colorbar=True,
            bar_width=0.4,
            showgrid_x=True,
            showgrid_y=True
        )
        fig.update_layout(
            xaxis_title="Timeline",
            yaxis_title="Task",
            height=300,
            margin=dict(l=150)
        )
        return fig
    except Exception as e:
        logger.error(f"Failed to generate Gantt chart: {str(e)}")
        return None

# Function to generate PDF
def generate_pdf(input_data, prediction, heatmap_fig, gantt_fig):
    buffer = BytesIO()
    doc = SimpleDocTemplate(buffer, pagesize=letter)
    styles = getSampleStyleSheet()
    story = []

    # Title
    story.append(Paragraph("Project Delay Prediction Report", styles['Title']))
    story.append(Spacer(1, 12))

    # Input Data
    story.append(Paragraph("Input Data", styles['Heading2']))
    input_fields = [
        f"Project Name: {input_data['project_name']}",
        f"Phase: {input_data['phase']}",
        f"Task: {input_data['task']}",
        f"Current Progress: {input_data['current_progress']}%",
        f"Task Expected Duration: {input_data['task_expected_duration']} days",
        f"Task Actual Duration: {input_data['task_actual_duration']} days",
        f"Workforce Gap: {input_data['workforce_gap']}%",
        f"Workforce Skill Level: {input_data['workforce_skill_level']}",
        f"Workforce Shift Hours: {input_data['workforce_shift_hours']}",
        f"Weather Impact Score: {input_data['weather_impact_score']}",
        f"Weather Condition: {input_data['weather_condition']}",
        f"Weather Forecast Date: {input_data['weather_forecast_date']}",
        f"Project Location: {input_data['project_location']}"
    ]
    for field in input_fields:
        story.append(Paragraph(field, styles['Normal']))
    story.append(Spacer(1, 12))

    # Prediction Results
    story.append(Paragraph("Prediction Results", styles['Heading2']))
    high_risk_text = "<br/>".join(format_high_risk_phases(prediction['high_risk_phases']))
    
    # Check for 2-week risk alert in AI insights
    two_week_alert = next((insight for insight in prediction['ai_insights'].split("; ") if "2-Week Risk Alert" in insight), None)
    if two_week_alert:
        story.append(Paragraph("2-Week Risk Alert", styles['Heading3']))
        story.append(Paragraph(two_week_alert, styles['Normal']))
        story.append(Spacer(1, 12))
    
    prediction_fields = [
        f"Delay Probability: {prediction['delay_probability']:.2f}%",
        f"High Risk Phases:<br/>{high_risk_text}",
        f"AI Insights: {prediction['ai_insights']}",
        f"Weather Condition: {prediction['weather_condition']}"
    ]
    for field in prediction_fields:
        story.append(Paragraph(field, styles['Normal']))
    story.append(Spacer(1, 12))

    # Heatmap
    story.append(Paragraph("Delay Risk Heatmap", styles['Heading2']))
    img_buffer = BytesIO()
    heatmap_fig.savefig(img_buffer, format='png', bbox_inches='tight')
    img_buffer.seek(0)
    story.append(Image(img_buffer, width=6*inch, height=2*inch))
    story.append(Spacer(1, 12))

    # Gantt Chart
    if gantt_fig:
        story.append(Paragraph("Gantt Chart", styles['Heading2']))
        gantt_buffer = BytesIO()
        try:
            gantt_fig.write_image(gantt_buffer, format='PNG')
            gantt_buffer.seek(0)
            story.append(Image(gantt_buffer, width=6*inch, height=3*inch))
        except Exception as e:
            logger.error(f"Failed to include Gantt chart in PDF: {str(e)}")
            story.append(Paragraph("Gantt Chart unavailable due to rendering issues.", styles['Normal']))
        story.append(Spacer(1, 12))

    doc.build(story)
    buffer.seek(0)
    return buffer

# Function to save data to Salesforce, including PDF and Status__c
def save_to_salesforce(input_data, prediction, pdf_buffer):
    if sf is None:
        return "Salesforce connection not established."
    try:
        # Determine Status__c based on delay probability
        status = "Flagged" if prediction["delay_probability"] > 75 else "Running"

        # Prepare data for Delay_Predictor__c object
        sf_data = {
            "Project_Name__c": input_data["project_name"],
            "Phase__c": input_data["phase"],
            "Task__c": input_data["task"],
            "Current_Progress__c": input_data["current_progress"],
            "Task_Expected_Duration__c": input_data["task_expected_duration"],
            "Task_Actual_Duration__c": input_data["task_actual_duration"],
            "Workforce_Gap__c": input_data["workforce_gap"],
            "Workforce_Skill_Level__c": input_data["workforce_skill_level"],
            "Workforce_Shift_Hours__c": input_data["workforce_shift_hours"],
            "Weather_Impact_Score__c": input_data["weather_impact_score"],
            "Weather_Condition__c": input_data["weather_condition"],
            "Weather_Forecast_Date__c": input_data["weather_forecast_date"],
            "Project_Location__c": input_data["project_location"],
            "Delay_Probability__c": prediction["delay_probability"],
            "AI_Insights__c": prediction["ai_insights"],
            "High_Risk_Phases__c": "; ".join(format_high_risk_phases(prediction["high_risk_phases"])),
            "Status__c": status
        }
        logger.info(f"Attempting to save to Salesforce Delay_Predictor__c: {sf_data}")
        
        # Create a new record in Delay_Predictor__c
        result = sf.Delay_Predictor__c.create(sf_data)
        if not result["success"]:
            logger.error(f"Salesforce save failed: {result['errors']}")
            return f"Salesforce save failed: {result['errors']}"

        # Get the record ID
        record_id = result["id"]
        logger.info(f"Created Salesforce record ID: {record_id}")

        # Upload PDF as ContentVersion
        pdf_data = pdf_buffer.getvalue()
        pdf_base64 = base64.b64encode(pdf_data).decode('utf-8')
        content_version = {
            "Title": f"Delay_Prediction_Report_{input_data['project_name']}_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
            "PathOnClient": "project_delay_report.pdf",
            "VersionData": pdf_base64,
            "FirstPublishLocationId": record_id
        }
        cv_result = sf.ContentVersion.create(content_version)
        if not cv_result["success"]:
            logger.error(f"Failed to upload PDF to Salesforce: {cv_result['errors']}")
            return f"Failed to upload PDF to Salesforce: {cv_result['errors']}"

        # Get the ContentVersion ID
        content_version_id = cv_result["id"]

        # Query the ContentDocumentId from the ContentVersion
        query = f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'"
        query_result = sf.query(query)
        if query_result["totalSize"] == 0:
            logger.error(f"Failed to retrieve ContentDocumentId for ContentVersion {content_version_id}")
            return "Failed to retrieve ContentDocumentId for the ContentVersion"
        content_document_id = query_result["records"][0]["ContentDocumentId"]

        # Construct the Salesforce URL for the ContentDocument
        pdf_url = f"{sf_instance_url}/sfc/servlet.shepherd/document/download/{content_document_id}"
        logger.info(f"Generated PDF URL: {pdf_url}")

        # Update the Delay_Predictor__c record with the PDF URL
        update_result = sf.Delay_Predictor__c.update(record_id, {"PDF_Report__c": pdf_url})
        if update_result != 204:
            logger.error(f"Failed to update PDF_Report__c with URL: {pdf_url}")
            return f"Failed to update PDF_Report__c field: {update_result}"

        return None
    except Exception as e:
        logger.error(f"Error saving to Salesforce: {str(e)}")
        return f"Error saving to Salesforce: {str(e)}"

# Input section
st.markdown("### Project Details")
col1, col2 = st.columns([1, 1])  # Equal width columns for better alignment

with col1:
    project_name = st.text_input("Project Name", help="Enter the name of the project")
    phase = st.selectbox(
        "Phase",
        [""] + ["Planning", "Design", "Construction"],
        index=0 if st.session_state.phase == "" else ["", "Planning", "Design", "Construction"].index(st.session_state.phase),
        key="phase_select",
        help="Select the project phase"
    )
    
    # Update task options when phase changes
    if phase != st.session_state.phase:
        st.session_state.phase = phase
        st.session_state.task = ""  # Reset task when phase changes
        logger.info(f"Phase changed to {phase}, resetting task")
    
    task_options_list = [""] + task_options.get(phase, []) if phase else [""]
    logger.info(f"Task options for phase '{phase}': {task_options_list}")
    task = st.selectbox(
        "Task",
        task_options_list,
        index=0 if st.session_state.task == "" else task_options_list.index(st.session_state.task) if st.session_state.task in task_options_list else 0,
        key="task_select",
        help="Select the task corresponding to the phase"
    )
    st.session_state.task = task
    current_progress = st.number_input("Current Progress (%)", min_value=0.0, max_value=100.0, step=1.0, value=0.0, help="Enter the current progress percentage")
    task_expected_duration = st.number_input("Task Expected Duration (days)", min_value=0, step=1, value=0, help="Enter the expected duration in days")
    task_actual_duration = st.number_input("Task Actual Duration (days)", min_value=0, step=1, value=0, help="Enter the actual duration in days")

with col2:
    workforce_gap = st.number_input("Workforce Gap (%)", min_value=0.0, max_value=100.0, step=1.0, value=0.0, help="Enter the workforce gap percentage")
    workforce_skill_level = st.selectbox("Workforce Skill Level", ["", "Low", "Medium", "High"], index=0, help="Select the workforce skill level")
    workforce_shift_hours = st.number_input("Workforce Shift Hours", min_value=0, step=1, value=0, help="Enter the shift hours")
    st.write(f"**Selected Shift Hours**: {workforce_shift_hours}")
    project_location = st.text_input("Project Location (City)", placeholder="e.g., New York", help="Enter the city for weather data")
    weather_forecast_date = st.date_input("Weather Forecast Date", min_value=datetime(2025, 1, 1), value=None, help="Select the forecast date")

# Predict button
predict_button = st.button("Fetch Weather and Predict Delay")

# Process inputs when button is clicked
if predict_button:
    logger.info("Processing prediction request")
    input_data = {
        "project_name": project_name,
        "phase": phase,
        "task": task,
        "current_progress": current_progress,
        "task_expected_duration": task_expected_duration,
        "task_actual_duration": task_actual_duration,
        "workforce_gap": workforce_gap,
        "workforce_skill_level": workforce_skill_level,
        "workforce_shift_hours": workforce_shift_hours,
        "weather_impact_score": 0,  # Placeholder, to be updated
        "weather_condition": "",    # Placeholder, to be updated
        "weather_forecast_date": weather_forecast_date.strftime("%Y-%m-%d") if weather_forecast_date else "",
        "project_location": project_location
    }
    
    # Validate inputs (excluding weather fields initially)
    error = validate_inputs(input_data)
    if error and not error.startswith("Please select or fill in weather"):
        st.error(error)
        logger.error(f"Validation error: {error}")
    else:
        # Fetch weather data
        if project_location and weather_forecast_date:
            weather_data, weather_error = fetch_weather_data(project_location, input_data["weather_forecast_date"])
            if weather_error:
                st.error(weather_error.get("error", "Unknown weather error"))
                logger.error(weather_error.get("error", "Unknown weather error"))
                input_data["weather_impact_score"] = 50  # Fallback value
                input_data["weather_condition"] = "Unknown"
            else:
                input_data["weather_impact_score"] = weather_data["weather_impact_score"]
                input_data["weather_condition"] = weather_data["weather_condition"]
                st.write(f"**Weather Data for {project_location} on {input_data['weather_forecast_date']}**:")
                st.write(f"- Condition: {weather_data['weather_condition']}")
                st.write(f"- Impact Score: {weather_data['weather_impact_score']}")
                st.write(f"- Temperature: {weather_data['temperature']}°C")
                st.write(f"- Humidity: {weather_data['humidity']}%")
                st.session_state.weather_data = weather_data
        else:
            st.error("Please provide a project location and weather forecast date.")
            logger.error("Project location or weather forecast date missing")
            input_data["weather_impact_score"] = 50  # Fallback value
            input_data["weather_condition"] = "Unknown"
        
        # Re-validate with weather data
        error = validate_inputs(input_data)
        if error:
            st.error(error)
            logger.error(f"Validation error: {error}")
        else:
            with st.spinner("Generating predictions and AI insights..."):
                try:
                    prediction = predict_delay(input_data)
                except Exception as e:
                    st.error(f"Prediction failed: {str(e)}")
                    logger.error(f"Prediction failed: {str(e)}")
                    prediction = {"error": str(e)}
            
            if "error" in prediction:
                st.error(prediction["error"])
            else:
                st.subheader("Prediction Results")
                st.write(f"**Delay Probability**: {prediction['delay_probability']:.2f}%")
                st.write("**High Risk Phases**:")
                for line in format_high_risk_phases(prediction['high_risk_phases']):
                    st.write(line)
                st.write(f"**AI Insights**: {prediction['ai_insights']}")
                st.write(f"**Weather Condition**: {prediction['weather_condition']}")
                
                # Generate Chart.js heatmap
                chart_config = generate_heatmap(prediction['delay_probability'], f"{phase}: {task}")
                chart_id = f"chart-{hash(str(chart_config))}"
                chart_html = f"""
                <canvas id="{chart_id}" style="max-height: 200px; max-width: 600px;"></canvas>
                <script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
                <script>
                    try {{
                        const ctx = document.getElementById('{chart_id}').getContext('2d');
                        new Chart(ctx, {json.dumps(chart_config)});
                    }} catch (e) {{
                        console.error('Chart.js failed: ' + e);
                    }}
                </script>
                """
                try:
                    components.html(chart_html, height=250)
                    logger.info("Chart.js heatmap rendered")
                except Exception as e:
                    logger.error(f"Chart.js rendering failed: {str(e)}")
                    st.error("Failed to render heatmap; please check your browser settings.")
                
                # Generate matplotlib figure for PDF
                fig, ax = plt.subplots(figsize=(8, 2))
                color = 'red' if prediction['delay_probability'] > 75 else 'yellow' if prediction['delay_probability'] > 50 else 'green'
                ax.barh([f"{phase}: {task}"], [prediction['delay_probability']], color=color, edgecolor='black')
                ax.set_xlim(0, 100)
                ax.set_xlabel("Delay Probability (%)")
                ax.set_title("Delay Risk Heatmap")
                plt.tight_layout()
                
                # Generate Gantt chart
                gantt_fig = generate_gantt_chart(input_data, prediction)
                if gantt_fig:
                    st.plotly_chart(gantt_fig, use_container_width=True)
                    logger.info("Gantt chart rendered")
                
                pdf_buffer = generate_pdf(input_data, prediction, fig, gantt_fig)
                plt.close(fig)
                st.download_button(
                    label="Download Prediction Report (PDF)",
                    data=pdf_buffer,
                    file_name="project_delay_report.pdf",
                    mime="application/pdf"
                )
                
                # Save to Salesforce, including PDF
                sf_error = save_to_salesforce(input_data, prediction, pdf_buffer)
                if sf_error:
                    st.error(sf_error)
                    logger.error(f"Salesforce error: {sf_error}")
                else:
                    st.success("Prediction data and PDF successfully saved to Salesforce!")
                    logger.info("Data and PDF saved to Salesforce")
                
                st.session_state.prediction = prediction
                st.session_state.input_data = input_data