Spaces:
Sleeping
Sleeping
File size: 15,037 Bytes
a283630 2e0d964 c47a773 756af64 2e0d964 a283630 c47a773 056c475 2e0d964 056c475 756af64 2e0d964 7ee1e44 056c475 c47a773 756af64 7ee1e44 756af64 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 056c475 c47a773 056c475 c47a773 056c475 c47a773 056c475 c47a773 056c475 c47a773 056c475 c47a773 6d4ce31 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 7ee1e44 c47a773 056c475 c47a773 7ee1e44 c47a773 2e0d964 4b82103 c47a773 4b82103 c47a773 4b82103 c47a773 056c475 c47a773 4b82103 c47a773 4b82103 c47a773 4b82103 c47a773 2e0d964 4b82103 a283630 4b82103 c47a773 4b82103 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import logging
from typing import Dict, List
import torch
import torch.nn as nn
import numpy as np
import pickle
from sklearn.preprocessing import StandardScaler
from datetime import datetime, timedelta
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# LSTM Model Definition (must match training script)
class DelayPredictor(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(DelayPredictor, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.attention = nn.Linear(hidden_size, 1)
self.fc = nn.Linear(hidden_size, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
lstm_out, _ = self.lstm(x)
attn_weights = torch.softmax(self.attention(lstm_out).squeeze(-1), dim=1)
context = torch.bmm(attn_weights.unsqueeze(1), lstm_out).squeeze(1)
out = self.fc(context)
return self.sigmoid(out) * 100
# Load model and scaler
try:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = DelayPredictor(input_size=7, hidden_size=64, num_layers=2).to(device)
model.load_state_dict(torch.load("models/delay_model.pth", map_location=device))
model.eval()
with open("models/scaler.pkl", "rb") as f:
scaler = pickle.load(f)
logger.info("LSTM model and scaler loaded successfully")
except Exception as e:
logger.error(f"Failed to load model or scaler: {str(e)}")
model = None
scaler = None
def get_weather_condition(score: int) -> str:
"""Map weather impact score (0-100) to descriptive weather condition."""
if score <= 10:
return "Sunny"
elif score <= 30:
return "Partly Cloudy"
elif score <= 50:
return "Cloudy"
elif score <= 70:
return "Light Rain"
elif score <= 85:
return "Heavy Rain"
else:
return "Severe Storm"
def call_ai_model_for_insights(input_data: Dict, delay_risk: float) -> List[str]:
"""
Generate detailed hardcoded insights based on input data and delay risk.
Includes a 2-week risk alert if weather_forecast_date is within 14 days.
Returns 3-5 prioritized, phase/task-specific insights.
"""
logger.info("Generating detailed hardcoded AI insights")
phase = input_data.get("phase", "")
task = input_data.get("task", "")
current_progress = input_data.get("current_progress", 0)
expected_duration = input_data.get("task_expected_duration", 0)
actual_duration = input_data.get("task_actual_duration", 0)
workforce_gap = input_data.get("workforce_gap", 0)
skill_level = input_data.get("workforce_skill_level", "").lower()
shift_hours = input_data.get("workforce_shift_hours", 0)
weather_score = input_data.get("weather_impact_score", 0)
weather_condition = input_data.get("weather_condition", get_weather_condition(weather_score))
project_location = input_data.get("project_location", "Unknown")
weather_forecast_date = input_data.get("weather_forecast_date", "")
# Initialize insights with scores for prioritization
insights = []
# Helper function to add insight with priority score
def add_insight(message: str, priority: float):
insights.append((message, priority))
# 2-week risk alert
try:
forecast_date = datetime.strptime(weather_forecast_date, "%Y-%m-%d")
current_date = datetime(2025, 5, 26) # Fixed date as per system
two_weeks_later = current_date + timedelta(days=14)
if current_date <= forecast_date <= two_weeks_later:
if delay_risk > 75 or weather_score > 75:
add_insight(
f"⚠️ Critical 2-Week Risk Alert: High risk of delay for {phase}: {task} in {project_location} by {weather_forecast_date} due to {'severe weather' if weather_score > 75 else 'high delay probability'}. Implement contingency plans immediately.",
1.2
)
elif delay_risk > 50 or weather_score > 50:
add_insight(
f"⚠️ 2-Week Risk Alert: Moderate risk of delay for {phase}: {task} in {project_location} by {weather_forecast_date}. Monitor closely and prepare mitigation measures.",
1.1
)
except ValueError:
logger.warning("Invalid weather_forecast_date format; skipping 2-week risk alert")
# Delay risk-based insights
if delay_risk > 75:
add_insight(f"Urgent: High delay risk detected for {phase}: {task} in {project_location}. Take immediate action.", 1.0)
elif delay_risk > 50:
add_insight(f"Monitor {phase}: {task} closely in {project_location} to prevent delays.", 0.9)
elif delay_risk > 25:
add_insight(f"Maintain steady progress for {phase}: {task} in {project_location}.", 0.7)
else:
add_insight(f"Optimize resources for {phase}: {task} in {project_location} to maintain schedule.", 0.6)
# Weather-specific insights
if weather_score > 85:
add_insight(f"Critical: Severe storm forecast in {project_location} for {phase}: {task}. Consider halting outdoor activities.", 1.1)
elif weather_score > 70:
add_insight(f"Reschedule outdoor tasks for {phase}: {task} in {project_location} due to heavy rain forecast.", 1.0)
elif weather_score > 50:
add_insight(f"Shift to indoor or weather-resistant tasks for {phase}: {task} in {project_location} due to light rain.", 0.9)
elif weather_score > 30:
add_insight(f"Monitor cloudy conditions in {project_location} for {phase}: {task} to avoid unexpected delays.", 0.7)
else:
add_insight(f"Proceed with {phase}: {task} in {project_location} under favorable weather conditions.", 0.6)
# Phase/task-specific insights
task_specific = {
"Planning": {
"Define Scope": f"Ensure stakeholder alignment for Planning: Define Scope in {project_location}, considering weather impacts.",
"Resource Allocation": f"Secure budget and resources early for Planning: Resource Allocation in {project_location}.",
"Permit Acquisition": f"Expedite permits for Planning: Permit Acquisition in {project_location} to avoid weather-related delays."
},
"Design": {
"Architectural Drafting": f"Engage architects early for Design: Architectural Drafting in {project_location}, accounting for weather.",
"Engineering Analysis": f"Hire additional engineers for Design: Engineering Analysis in {project_location} to meet deadlines.",
"Design Review": f"Schedule thorough reviews for Design: Design Review in {project_location}, considering forecast."
},
"Construction": {
"Foundation Work": f"Optimize material delivery for Construction: Foundation Work in {project_location}, avoiding {weather_condition.lower()}.",
"Structural Build": f"Ensure equipment availability for Construction: Structural Build in {project_location} under {weather_condition.lower()}.",
"Utility Installation": f"Coordinate subcontractors for Construction: Utility Installation in {project_location}, monitoring weather."
}
}
if phase in task_specific and task in task_specific[phase]:
add_insight(task_specific[phase][task], 0.8)
# Workforce-based insights
if workforce_gap > 30:
add_insight(f"Urgently hire subcontractors in {project_location} to address {workforce_gap}% workforce shortage.", 1.0)
elif workforce_gap > 15:
add_insight(f"Recruit additional workers in {project_location} to reduce {workforce_gap}% workforce gap.", 0.9)
elif workforce_gap > 5:
add_insight(f"Consider temporary staff in {project_location} to address minor workforce gap.", 0.7)
if skill_level == "low":
add_insight(f"Provide training in {project_location} to improve low skill levels for {phase}: {task}.", 0.9)
elif skill_level == "medium" and delay_risk > 50:
add_insight(f"Upskill workforce in {project_location} for efficiency in {phase}: {task}.", 0.8)
elif skill_level == "high" and delay_risk < 25:
add_insight(f"Leverage high skill levels in {project_location} to maintain {phase}: {task} progress.", 0.6)
if shift_hours < 6:
add_insight(f"Extend shift hours beyond {shift_hours} in {project_location} to meet {phase}: {task} deadlines.", 0.9)
elif shift_hours < 8 and delay_risk > 50:
add_insight(f"Increase shift hours to 8 in {project_location} for {phase}: {task}.", 0.8)
elif shift_hours > 10:
add_insight(f"Balance shifts in {project_location} to prevent burnout during {phase}: {task}.", 0.7)
# Progress and duration-based insights
if expected_duration > 0 and actual_duration > expected_duration:
overrun_pct = ((actual_duration - expected_duration) / expected_duration) * 100
if overrun_pct > 20:
add_insight(f"Address significant duration overrun ({overrun_pct:.1f}%) for {phase}: {task} in {project_location}.", 1.0)
elif overrun_pct > 10:
add_insight(f"Review scheduling to address {overrun_pct:.1f}% overrun in {phase}: {task} in {project_location}.", 0.8)
if expected_duration > 0:
expected_progress = min((actual_duration / expected_duration) * 100, 100)
if current_progress < expected_progress * 0.8:
add_insight(f"Accelerate task progress for {phase}: {task} in {project_location} to align with schedule.", 0.9)
elif current_progress < 50 and delay_risk > 50:
add_insight(f"Increase resources to boost {current_progress}% progress in {phase}: {task} in {project_location}.", 0.8)
# Edge cases
if workforce_gap >= 90:
add_insight(f"Critical: Halt non-essential tasks in {project_location} until workforce gap for {phase}: {task} is resolved.", 1.1)
if current_progress == 0 and delay_risk > 50:
add_insight(f"Initiate {phase}: {task} in {project_location} immediately to avoid further delays.", 1.0)
if expected_duration == 0 or actual_duration == 0:
add_insight(f"Provide accurate duration estimates for {phase}: {task} in {project_location} for reliable predictions.", 0.7)
if weather_score > 50 and phase == "Construction":
add_insight(f"Prepare contingency plans for {phase}: {task} in {project_location} due to adverse weather forecast.", 0.95)
# Sort insights by priority and select top 3-5
insights.sort(key=lambda x: x[1], reverse=True)
selected_insights = [insight[0] for insight in insights[:5]]
logger.info(f"Generated insights: {selected_insights}")
return selected_insights or [f"No significant delay factors detected for {phase}: {task} in {project_location}."]
def predict_delay(input_data: Dict) -> Dict:
"""
Predict delay probability using LSTM model.
Inputs: Project task data (phase, progress, duration, workforce, weather).
Outputs: Delay probability, AI insights, high-risk phases, weather condition.
"""
logger.info("Starting LSTM delay prediction")
if model is None or scaler is None:
logger.error("Model or scaler not loaded; falling back to default")
return {
"project": input_data.get("project_name", "Unnamed Project"),
"phase": input_data.get("phase", ""),
"task": input_data.get("task", ""),
"delay_probability": 50.0,
"ai_insights": "Model unavailable; please check deployment.",
"high_risk_phases": [],
"weather_condition": "Unknown"
}
phase = input_data.get("phase", "")
task = input_data.get("task", "")
weather_condition = input_data.get("weather_condition", get_weather_condition(input_data.get("weather_impact_score", 0)))
# Prepare input features
phase_mapping = {"Planning": 0, "Design": 1, "Construction": 2}
skill_mapping = {"Low": 0, "Medium": 1, "High": 2}
try:
features = np.array([[
input_data.get("current_progress", 0),
input_data.get("task_expected_duration", 0),
input_data.get("task_actual_duration", 0),
input_data.get("workforce_gap", 0),
input_data.get("weather_impact_score", 0),
skill_mapping.get(input_data.get("workforce_skill_level", "Medium"), 1),
phase_mapping.get(phase, 0)
]])
except KeyError as e:
logger.error(f"Invalid input data: {str(e)}")
return {
"project": input_data.get("project_name", "Unnamed Project"),
"phase": phase,
"task": task,
"delay_probability": 50.0,
"ai_insights": f"Invalid input: {str(e)}",
"high_risk_phases": [],
"weather_condition": weather_condition
}
# Standardize and reshape
try:
features_scaled = scaler.transform(features)
features_tensor = torch.tensor(features_scaled.reshape(1, 1, -1), dtype=torch.float32).to(device)
except Exception as e:
logger.error(f"Feature preprocessing failed: {str(e)}")
return {
"project": input_data.get("project_name", "Unnamed Project"),
"phase": phase,
"task": task,
"delay_probability": 50.0,
"ai_insights": f"Preprocessing error: {str(e)}",
"high_risk_phases": [],
"weather_condition": weather_condition
}
# Predict
with torch.no_grad():
delay_risk = model(features_tensor).cpu().numpy().item()
delay_risk = round(max(0, min(delay_risk, 100)), 1)
# Generate high_risk_phases
task_options = {
"Planning": ["Define Scope", "Resource Allocation", "Permit Acquisition"],
"Design": ["Architectural Drafting", "Engineering Analysis", "Design Review"],
"Construction": ["Foundation Work", "Structural Build", "Utility Installation"]
}
high_risk_phases = []
if phase in task_options:
for t in task_options[phase]:
task_risk = delay_risk
if t != task:
task_risk = min(max(task_risk + (hash(t) % 10 - 5), 0), 100)
high_risk_phases.append({
"phase": phase,
"task": t,
"risk": round(task_risk, 1)
})
# Generate insights
insights = call_ai_model_for_insights(input_data, delay_risk)
logger.info(f"Prediction completed: Delay risk = {delay_risk:.1f}%")
return {
"project": input_data.get("project_name", "Unnamed Project"),
"phase": phase,
"task": task,
"delay_probability": delay_risk,
"ai_insights": "; ".join(insights) if insights else "No significant delay factors detected.",
"high_risk_phases": high_risk_phases,
"weather_condition": weather_condition
} |