import streamlit as st
import streamlit.components.v1 as components
import pandas as pd
import matplotlib.pyplot as plt
import plotly.figure_factory as ff
import os
from datetime import datetime, timedelta
import json
import requests
import base64
import logging
from model import predict_delay, get_weather_condition
from utils import validate_inputs, generate_heatmap
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.units import inch
from io import BytesIO
from simple_salesforce import Salesforce
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Streamlit app configuration
st.set_page_config(page_title="Delay 🚀", layout="wide")
# Salesforce connection (using environment variables)
try:
sf_instance_url = os.environ.get("SF_INSTANCE_URL")
if not sf_instance_url:
raise ValueError("SF_INSTANCE_URL environment variable not set")
if "lightning.force.com" in sf_instance_url:
logger.warning("SF_INSTANCE_URL contains lightning.force.com; consider using my.salesforce.com for reliable PDF downloads")
sf = Salesforce(
username=os.environ.get("SF_USERNAME"),
password=os.environ.get("SF_PASSWORD"),
security_token=os.environ.get("SF_SECURITY_TOKEN"),
instance_url=sf_instance_url
)
except Exception as e:
st.error(f"Failed to connect to Salesforce: {str(e)}")
logger.error(f"Salesforce connection failed: {str(e)}")
sf = None
# Weather API configuration
WEATHER_API_KEY = os.environ.get("WEATHER_API_KEY")
WEATHER_API_URL = "http://api.openweathermap.org/data/2.5/forecast"
# Title
st.title("Project Delay Predictor 🚀")
# Task options per phase
task_options = {
"Planning": ["Define Scope", "Resource Allocation", "Permit Acquisition"],
"Design": ["Architectural Drafting", "Engineering Analysis", "Design Review"],
"Construction": ["Foundation Work", "Structural Build", "Utility Installation"]
}
# Initialize session state
if 'phase' not in st.session_state:
st.session_state.phase = ""
if 'task' not in st.session_state:
st.session_state.task = ""
if 'weather_data' not in st.session_state:
st.session_state.weather_data = None
# Function to fetch weather data
def fetch_weather_data(project_location, date):
if not WEATHER_API_KEY:
logger.error("WEATHER_API_KEY not set")
return None, {"error": "Weather API key not set. Please provide a valid API key."}
try:
params = {
"q": project_location,
"appid": WEATHER_API_KEY,
"units": "metric"
}
response = requests.get(WEATHER_API_URL, params=params)
response.raise_for_status()
data = response.json()
# Find the closest forecast to the target date
target_date = datetime.strptime(date, "%Y-%m-%d")
closest_forecast = None
min_time_diff = float('inf')
for forecast in data['list']:
forecast_time = datetime.fromtimestamp(forecast['dt'])
time_diff = abs((forecast_time - target_date).total_seconds())
if time_diff < min_time_diff:
min_time_diff = time_diff
closest_forecast = forecast
if not closest_forecast:
return None, {"error": "No forecast available for the specified date."}
# Map weather conditions to impact score
weather_main = forecast['weather'][0]['main'].lower()
impact_score = 50 # Default
if 'clear' in weather_main:
impact_score = 10
elif 'clouds' in weather_main:
impact_score = 30 if forecast['clouds']['all'] < 50 else 50
elif 'rain' in weather_main:
impact_score = 70 if forecast['rain'].get('3h', 0) < 2.5 else 85
elif 'storm' in weather_main or 'thunderstorm' in weather_main:
impact_score = 90
weather_condition = get_weather_condition(impact_score)
return {
"weather_impact_score": impact_score,
"weather_condition": weather_condition,
"temperature": forecast['main']['temp'],
"humidity": forecast['main']['humidity']
}, None
except Exception as e:
logger.error(f"Failed to fetch weather data: {str(e)}")
return None, {"error": f"Failed to fetch weather data for {project_location}: {str(e)}"}
# Function to format high_risk_phases with flag and alert
def format_high_risk_phases(high_risk_phases):
formatted = []
for phase in high_risk_phases:
flag = "🚩" if phase['risk'] > 75 else ""
alert = "[Alert]" if phase['risk'] > 75 else ""
formatted.append(f"{flag} {phase['phase']}: {phase['task']} (Risk: {phase['risk']:.1f}%) {alert}")
return formatted
# Function to generate Gantt chart
def generate_gantt_chart(input_data, prediction):
try:
phase = input_data["phase"]
task = input_data["task"]
expected_duration = input_data["task_expected_duration"]
actual_duration = input_data["task_actual_duration"]
forecast_date = datetime.strptime(input_data["weather_forecast_date"], "%Y-%m-%d")
delay_risk = prediction["delay_probability"]
# Calculate start and end dates
start_date = forecast_date - timedelta(days=max(expected_duration, actual_duration))
expected_end = start_date + timedelta(days=expected_duration)
actual_end = start_date + timedelta(days=actual_duration) if actual_duration > 0 else expected_end
# Prepare Gantt chart data
df = [
dict(Task=f"{phase}: {task} (Expected)", Start=start_date.strftime("%Y-%m-%d"), Finish=expected_end.strftime("%Y-%m-%d"), Resource="Expected", Risk=delay_risk),
dict(Task=f"{phase}: {task} (Actual)", Start=start_date.strftime("%Y-%m-%d"), Finish=actual_end.strftime("%Y-%m-%d"), Resource="Actual", Risk=delay_risk)
]
# Color based on delay risk
colors = {
"Expected": "rgb(0, 255, 0)" if delay_risk <= 50 else "rgb(255, 255, 0)" if delay_risk <= 75 else "rgb(255, 0, 0)",
"Actual": "rgb(0, 200, 0)" if delay_risk <= 50 else "rgb(200, 200, 0)" if delay_risk <= 75 else "rgb(200, 0, 0)"
}
# Create Gantt chart
fig = ff.create_gantt(
df,
colors=colors,
index_col="Resource",
title=f"Gantt Chart for {phase}: {task}",
show_colorbar=True,
bar_width=0.4,
showgrid_x=True,
showgrid_y=True
)
fig.update_layout(
xaxis_title="Timeline",
yaxis_title="Task",
height=300,
margin=dict(l=150)
)
return fig
except Exception as e:
logger.error(f"Failed to generate Gantt chart: {str(e)}")
return None
# Function to generate PDF
def generate_pdf(input_data, prediction, heatmap_fig, gantt_fig):
buffer = BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=letter)
styles = getSampleStyleSheet()
story = []
# Title
story.append(Paragraph("Project Delay Prediction Report", styles['Title']))
story.append(Spacer(1, 12))
# Input Data
story.append(Paragraph("Input Data", styles['Heading2']))
input_fields = [
f"Project Name: {input_data['project_name']}",
f"Phase: {input_data['phase']}",
f"Task: {input_data['task']}",
f"Current Progress: {input_data['current_progress']}%",
f"Task Expected Duration: {input_data['task_expected_duration']} days",
f"Task Actual Duration: {input_data['task_actual_duration']} days",
f"Workforce Gap: {input_data['workforce_gap']}%",
f"Workforce Skill Level: {input_data['workforce_skill_level']}",
f"Workforce Shift Hours: {input_data['workforce_shift_hours']}",
f"Weather Impact Score: {input_data['weather_impact_score']}",
f"Weather Condition: {input_data['weather_condition']}",
f"Weather Forecast Date: {input_data['weather_forecast_date']}",
f"Project Location: {input_data['project_location']}"
]
for field in input_fields:
story.append(Paragraph(field, styles['Normal']))
story.append(Spacer(1, 12))
# Prediction Results
story.append(Paragraph("Prediction Results", styles['Heading2']))
high_risk_text = "
".join(format_high_risk_phases(prediction['high_risk_phases']))
# Check for 2-week risk alert in AI insights
two_week_alert = next((insight for insight in prediction['ai_insights'].split("; ") if "2-Week Risk Alert" in insight), None)
if two_week_alert:
story.append(Paragraph("2-Week Risk Alert", styles['Heading3']))
story.append(Paragraph(two_week_alert, styles['Normal']))
story.append(Spacer(1, 12))
prediction_fields = [
f"Delay Probability: {prediction['delay_probability']:.2f}%",
f"High Risk Phases:
{high_risk_text}",
f"AI Insights: {prediction['ai_insights']}",
f"Weather Condition: {prediction['weather_condition']}"
]
for field in prediction_fields:
story.append(Paragraph(field, styles['Normal']))
story.append(Spacer(1, 12))
# Heatmap
story.append(Paragraph("Delay Risk Heatmap", styles['Heading2']))
img_buffer = BytesIO()
heatmap_fig.savefig(img_buffer, format='png', bbox_inches='tight')
img_buffer.seek(0)
story.append(Image(img_buffer, width=6*inch, height=2*inch))
story.append(Spacer(1, 12))
# Gantt Chart
if gantt_fig:
story.append(Paragraph("Gantt Chart", styles['Heading2']))
gantt_buffer = BytesIO()
try:
gantt_fig.write_image(gantt_buffer, format='PNG')
gantt_buffer.seek(0)
story.append(Image(gantt_buffer, width=6*inch, height=3*inch))
except Exception as e:
logger.error(f"Failed to include Gantt chart in PDF: {str(e)}")
story.append(Paragraph("Gantt Chart unavailable due to rendering issues.", styles['Normal']))
story.append(Spacer(1, 12))
doc.build(story)
buffer.seek(0)
return buffer
# Function to save data to Salesforce, including PDF and Status__c
def save_to_salesforce(input_data, prediction, pdf_buffer):
if sf is None:
return "Salesforce connection not established."
try:
# Determine Status__c based on delay probability
status = "Flagged" if prediction["delay_probability"] > 75 else "Running"
# Prepare data for Delay_Predictor__c object
sf_data = {
"Project_Name__c": input_data["project_name"],
"Phase__c": input_data["phase"],
"Task__c": input_data["task"],
"Current_Progress__c": input_data["current_progress"],
"Task_Expected_Duration__c": input_data["task_expected_duration"],
"Task_Actual_Duration__c": input_data["task_actual_duration"],
"Workforce_Gap__c": input_data["workforce_gap"],
"Workforce_Skill_Level__c": input_data["workforce_skill_level"],
"Workforce_Shift_Hours__c": input_data["workforce_shift_hours"],
"Weather_Impact_Score__c": input_data["weather_impact_score"],
"Weather_Condition__c": input_data["weather_condition"],
"Weather_Forecast_Date__c": input_data["weather_forecast_date"],
"Project_Location__c": input_data["project_location"],
"Delay_Probability__c": prediction["delay_probability"],
"AI_Insights__c": prediction["ai_insights"],
"High_Risk_Phases__c": "; ".join(format_high_risk_phases(prediction["high_risk_phases"])),
"Status__c": status
}
logger.info(f"Attempting to save to Salesforce Delay_Predictor__c: {sf_data}")
# Create a new record in Delay_Predictor__c
result = sf.Delay_Predictor__c.create(sf_data)
if not result["success"]:
logger.error(f"Salesforce save failed: {result['errors']}")
return f"Salesforce save failed: {result['errors']}"
# Get the record ID
record_id = result["id"]
logger.info(f"Created Salesforce record ID: {record_id}")
# Upload PDF as ContentVersion
pdf_data = pdf_buffer.getvalue()
pdf_base64 = base64.b64encode(pdf_data).decode('utf-8')
content_version = {
"Title": f"Delay_Prediction_Report_{input_data['project_name']}_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
"PathOnClient": "project_delay_report.pdf",
"VersionData": pdf_base64,
"FirstPublishLocationId": record_id
}
cv_result = sf.ContentVersion.create(content_version)
if not cv_result["success"]:
logger.error(f"Failed to upload PDF to Salesforce: {cv_result['errors']}")
return f"Failed to upload PDF to Salesforce: {cv_result['errors']}"
# Get the ContentVersion ID
content_version_id = cv_result["id"]
# Query the ContentDocumentId from the ContentVersion
query = f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'"
query_result = sf.query(query)
if query_result["totalSize"] == 0:
logger.error(f"Failed to retrieve ContentDocumentId for ContentVersion {content_version_id}")
return "Failed to retrieve ContentDocumentId for the ContentVersion"
content_document_id = query_result["records"][0]["ContentDocumentId"]
# Construct the Salesforce URL for the ContentDocument
pdf_url = f"{sf_instance_url}/sfc/servlet.shepherd/document/download/{content_document_id}"
logger.info(f"Generated PDF URL: {pdf_url}")
# Update the Delay_Predictor__c record with the PDF URL
update_result = sf.Delay_Predictor__c.update(record_id, {"PDF_Report__c": pdf_url})
if update_result != 204:
logger.error(f"Failed to update PDF_Report__c with URL: {pdf_url}")
return f"Failed to update PDF_Report__c field: {update_result}"
return None
except Exception as e:
logger.error(f"Error saving to Salesforce: {str(e)}")
return f"Error saving to Salesforce: {str(e)}"
# Input section
st.markdown("### Project Details")
col1, col2 = st.columns([1, 1]) # Equal width columns for better alignment
with col1:
project_name = st.text_input("Project Name", help="Enter the name of the project")
phase = st.selectbox(
"Phase",
[""] + ["Planning", "Design", "Construction"],
index=0 if st.session_state.phase == "" else ["", "Planning", "Design", "Construction"].index(st.session_state.phase),
key="phase_select",
help="Select the project phase"
)
# Update task options when phase changes
if phase != st.session_state.phase:
st.session_state.phase = phase
st.session_state.task = "" # Reset task when phase changes
logger.info(f"Phase changed to {phase}, resetting task")
task_options_list = [""] + task_options.get(phase, []) if phase else [""]
logger.info(f"Task options for phase '{phase}': {task_options_list}")
task = st.selectbox(
"Task",
task_options_list,
index=0 if st.session_state.task == "" else task_options_list.index(st.session_state.task) if st.session_state.task in task_options_list else 0,
key="task_select",
help="Select the task corresponding to the phase"
)
st.session_state.task = task
current_progress = st.number_input("Current Progress (%)", min_value=0.0, max_value=100.0, step=1.0, value=0.0, help="Enter the current progress percentage")
task_expected_duration = st.number_input("Task Expected Duration (days)", min_value=0, step=1, value=0, help="Enter the expected duration in days")
task_actual_duration = st.number_input("Task Actual Duration (days)", min_value=0, step=1, value=0, help="Enter the actual duration in days")
with col2:
workforce_gap = st.number_input("Workforce Gap (%)", min_value=0.0, max_value=100.0, step=1.0, value=0.0, help="Enter the workforce gap percentage")
workforce_skill_level = st.selectbox("Workforce Skill Level", ["", "Low", "Medium", "High"], index=0, help="Select the workforce skill level")
workforce_shift_hours = st.number_input("Workforce Shift Hours", min_value=0, step=1, value=0, help="Enter the shift hours")
st.write(f"**Selected Shift Hours**: {workforce_shift_hours}")
project_location = st.text_input("Project Location (City)", placeholder="e.g., New York", help="Enter the city for weather data")
weather_forecast_date = st.date_input("Weather Forecast Date", min_value=datetime(2025, 1, 1), value=None, help="Select the forecast date")
# Predict button
predict_button = st.button("Fetch Weather and Predict Delay")
# Process inputs when button is clicked
if predict_button:
logger.info("Processing prediction request")
input_data = {
"project_name": project_name,
"phase": phase,
"task": task,
"current_progress": current_progress,
"task_expected_duration": task_expected_duration,
"task_actual_duration": task_actual_duration,
"workforce_gap": workforce_gap,
"workforce_skill_level": workforce_skill_level,
"workforce_shift_hours": workforce_shift_hours,
"weather_impact_score": 0, # Placeholder, to be updated
"weather_condition": "", # Placeholder, to be updated
"weather_forecast_date": weather_forecast_date.strftime("%Y-%m-%d") if weather_forecast_date else "",
"project_location": project_location
}
# Validate inputs (excluding weather fields initially)
error = validate_inputs(input_data)
if error and not error.startswith("Please select or fill in weather"):
st.error(error)
logger.error(f"Validation error: {error}")
else:
# Fetch weather data
if project_location and weather_forecast_date:
weather_data, weather_error = fetch_weather_data(project_location, input_data["weather_forecast_date"])
if weather_error:
st.error(weather_error.get("error", "Unknown weather error"))
logger.error(weather_error.get("error", "Unknown weather error"))
input_data["weather_impact_score"] = 50 # Fallback value
input_data["weather_condition"] = "Unknown"
else:
input_data["weather_impact_score"] = weather_data["weather_impact_score"]
input_data["weather_condition"] = weather_data["weather_condition"]
st.write(f"**Weather Data for {project_location} on {input_data['weather_forecast_date']}**:")
st.write(f"- Condition: {weather_data['weather_condition']}")
st.write(f"- Impact Score: {weather_data['weather_impact_score']}")
st.write(f"- Temperature: {weather_data['temperature']}°C")
st.write(f"- Humidity: {weather_data['humidity']}%")
st.session_state.weather_data = weather_data
else:
st.error("Please provide a project location and weather forecast date.")
logger.error("Project location or weather forecast date missing")
input_data["weather_impact_score"] = 50 # Fallback value
input_data["weather_condition"] = "Unknown"
# Re-validate with weather data
error = validate_inputs(input_data)
if error:
st.error(error)
logger.error(f"Validation error: {error}")
else:
with st.spinner("Generating predictions and AI insights..."):
try:
prediction = predict_delay(input_data)
except Exception as e:
st.error(f"Prediction failed: {str(e)}")
logger.error(f"Prediction failed: {str(e)}")
prediction = {"error": str(e)}
if "error" in prediction:
st.error(prediction["error"])
else:
st.subheader("Prediction Results")
st.write(f"**Delay Probability**: {prediction['delay_probability']:.2f}%")
st.write("**High Risk Phases**:")
for line in format_high_risk_phases(prediction['high_risk_phases']):
st.write(line)
st.write(f"**AI Insights**: {prediction['ai_insights']}")
st.write(f"**Weather Condition**: {prediction['weather_condition']}")
# Generate Chart.js heatmap
chart_config = generate_heatmap(prediction['delay_probability'], f"{phase}: {task}")
chart_id = f"chart-{hash(str(chart_config))}"
chart_html = f"""
"""
try:
components.html(chart_html, height=250)
logger.info("Chart.js heatmap rendered")
except Exception as e:
logger.error(f"Chart.js rendering failed: {str(e)}")
st.error("Failed to render heatmap; please check your browser settings.")
# Generate matplotlib figure for PDF
fig, ax = plt.subplots(figsize=(8, 2))
color = 'red' if prediction['delay_probability'] > 75 else 'yellow' if prediction['delay_probability'] > 50 else 'green'
ax.barh([f"{phase}: {task}"], [prediction['delay_probability']], color=color, edgecolor='black')
ax.set_xlim(0, 100)
ax.set_xlabel("Delay Probability (%)")
ax.set_title("Delay Risk Heatmap")
plt.tight_layout()
# Generate Gantt chart
gantt_fig = generate_gantt_chart(input_data, prediction)
if gantt_fig:
st.plotly_chart(gantt_fig, use_container_width=True)
logger.info("Gantt chart rendered")
pdf_buffer = generate_pdf(input_data, prediction, fig, gantt_fig)
plt.close(fig)
st.download_button(
label="Download Prediction Report (PDF)",
data=pdf_buffer,
file_name="project_delay_report.pdf",
mime="application/pdf"
)
# Save to Salesforce, including PDF
sf_error = save_to_salesforce(input_data, prediction, pdf_buffer)
if sf_error:
st.error(sf_error)
logger.error(f"Salesforce error: {sf_error}")
else:
st.success("Prediction data and PDF successfully saved to Salesforce!")
logger.info("Data and PDF saved to Salesforce")
st.session_state.prediction = prediction
st.session_state.input_data = input_data