Spaces:
Sleeping
Sleeping
File size: 6,338 Bytes
4efd841 239b12e 88fe94b de70a25 88fe94b de70a25 88fe94b de70a25 88fe94b de70a25 185b0b9 0fb91cc 88fe94b 0fb91cc 88fe94b 0fb91cc 88fe94b 0fb91cc 88fe94b 0fb91cc de70a25 0fb91cc de70a25 0fb91cc de70a25 88fe94b de70a25 0fb91cc 88fe94b 0fb91cc 88fe94b 0fb91cc 88fe94b e7cb6e4 88fe94b 0fb91cc 88fe94b de70a25 88fe94b 0fb91cc 88fe94b 0fb91cc de70a25 0fb91cc 88fe94b de70a25 0fb91cc 88fe94b de70a25 88fe94b de70a25 88fe94b 0fb91cc 88fe94b 0fb91cc 88fe94b 0fb91cc 4efd841 88fe94b 0fb91cc 11562f0 88fe94b 0fb91cc 4efd841 a2aa653 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import cv2
import numpy as np
import torch
from ultralytics import YOLO
import gradio as gr
from scipy.interpolate import interp1d
import uuid
import os
# Load the trained YOLOv8n model from the Space's root directory
model = YOLO("best.pt") # Assumes best.pt is in the same directory as app.py
# Constants for LBW decision and video processing
STUMPS_WIDTH = 0.2286 # meters (width of stumps)
BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
FRAME_RATE = 30 # Input video frame rate
SLOW_MOTION_FACTOR = 2 # For slow motion (6x slower)
CONF_THRESHOLD = 0.3 # Lowered confidence threshold for better detection
def process_video(video_path):
# Initialize video capture
if not os.path.exists(video_path):
return [], [], "Error: Video file not found"
cap = cv2.VideoCapture(video_path)
frames = []
ball_positions = []
debug_log = []
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
frames.append(frame.copy()) # Store original frame
# Detect ball using the trained YOLOv8n model
results = model.predict(frame, conf=CONF_THRESHOLD)
detections = 0
for detection in results[0].boxes:
if detection.cls == 0: # Assuming class 0 is the ball
detections += 1
x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy()
ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
# Draw bounding box on frame for visualization
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
frames[-1] = frame # Update frame with bounding box
debug_log.append(f"Frame {frame_count}: {detections} ball detections")
cap.release()
if not ball_positions:
debug_log.append("No balls detected in any frame")
else:
debug_log.append(f"Total ball detections: {len(ball_positions)}")
return frames, ball_positions, "\n".join(debug_log)
def estimate_trajectory(ball_positions, frames):
# Simplified physics-based trajectory projection
if len(ball_positions) < 2:
return None, None, "Error: Fewer than 2 ball detections for trajectory"
# Extract x, y coordinates
x_coords = [pos[0] for pos in ball_positions]
y_coords = [pos[1] for pos in ball_positions]
times = np.arange(len(ball_positions)) / FRAME_RATE
# Interpolate to smooth trajectory
try:
fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate")
except Exception as e:
return None, None, f"Error in trajectory interpolation: {str(e)}"
# Project trajectory forward (0.5 seconds post-impact)
t_future = np.linspace(times[-1], times[-1] + 0.5, 10)
x_future = fx(t_future)
y_future = fy(t_future)
return list(zip(x_future, y_future)), t_future, "Trajectory estimated successfully"
def lbw_decision(ball_positions, trajectory, frames):
# Simplified LBW logic
if not frames:
return "Error: No frames processed", None
if not trajectory or len(ball_positions) < 2:
return "Not enough data (insufficient ball detections)", None
# Assume stumps are at the bottom center of the frame (calibration needed)
frame_height, frame_width = frames[0].shape[:2]
stumps_x = frame_width / 2
stumps_y = frame_height * 0.9 # Approximate stumps position
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0) # Assume 3m pitch width
# Check pitching point (first detected position)
pitch_x, pitch_y = ball_positions[0]
if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
return "Not Out (Pitched outside line)", None
# Check impact point (last detected position)
impact_x, impact_y = ball_positions[-1]
if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
return "Not Out (Impact outside line)", None
# Check trajectory hitting stumps
for x, y in trajectory:
if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
return "Out", trajectory
return "Not Out (Missing stumps)", trajectory
def generate_slow_motion(frames, trajectory, output_path):
# Generate very slow-motion video with ball detection and trajectory overlay
if not frames:
return None
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frames[0].shape[1], frames[0].shape[0]))
for frame in frames:
if trajectory:
for x, y in trajectory:
cv2.circle(frame, (int(x), int(y)), 5, (255, 0, 0), -1) # Blue dots for trajectory
for _ in range(SLOW_MOTION_FACTOR): # Duplicate frames for very slow motion
out.write(frame)
out.release()
return output_path
def drs_review(video):
# Process video and generate DRS output
frames, ball_positions, debug_log = process_video(video)
if not frames:
return f"Error: Failed to process video\nDebug Log:\n{debug_log}", None
trajectory, _, trajectory_log = estimate_trajectory(ball_positions, frames)
decision, trajectory = lbw_decision(ball_positions, trajectory, frames)
# Generate slow-motion replay even if Trajectory fails
output_path = f"output_{uuid.uuid4()}.mp4"
slow_motion_path = generate_slow_motion(frames, trajectory, output_path)
# Combine debug logs for output
debug_output = f"{debug_log}\n{trajectory_log}"
return f"DRS Decision: {decision}\nDebug Log:\n{debug_output}", slow_motion_path
# Gradio interface
iface = gr.Interface(
fn=drs_review,
inputs=gr.Video(label="Upload Video Clip"),
outputs=[
gr.Textbox(label="DRS Decision and Debug Log"),
gr.Video(label="Very Slow-Motion Replay with Ball Detection and Trajectory")
],
title="AI-Powered DRS for LBW in Local Cricket",
description="Upload a video clip of a cricket delivery to get an LBW decision and very slow-motion replay showing ball detection (green boxes) and trajectory (blue dots)."
)
if __name__ == "__main__":
iface.launch() |