Spaces:
Sleeping
Sleeping
File size: 26,276 Bytes
bc41d2b ea4410c 1c6c152 298b241 e0439f0 298b241 632f432 e0439f0 dc741c4 e0439f0 0107214 bc41d2b 298b241 1c6c152 96c45a3 632f432 0107214 96c45a3 ea4410c 96c45a3 0107214 bc41d2b ea4410c 96c45a3 bc41d2b 96c45a3 298b241 bc41d2b 0107214 bc41d2b 632f432 298b241 632f432 298b241 632f432 bc41d2b 632f432 bc41d2b 632f432 bc41d2b 298b241 e0439f0 dc741c4 e0439f0 298b241 e0439f0 bc41d2b e0439f0 298b241 e0439f0 632f432 e0439f0 298b241 e0439f0 298b241 e0439f0 bc41d2b 298b241 632f432 298b241 632f432 298b241 1c6c152 298b241 1c6c152 298b241 1c6c152 298b241 2a1f321 298b241 1c6c152 298b241 1c6c152 2a1f321 1c6c152 e0439f0 2a1f321 e0439f0 2a1f321 bc41d2b e0439f0 298b241 e0439f0 298b241 e0439f0 298b241 dc741c4 298b241 e0439f0 dc741c4 e0439f0 dc741c4 e0439f0 dc741c4 e0439f0 bc41d2b ea4410c 298b241 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
import streamlit as st
import pandas as pd
from prophet import Prophet
from datetime import datetime, timedelta
import numpy as np
import plotly.graph_objects as go
import os
from dotenv import load_dotenv
from simple_salesforce import Salesforce
import logging
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib.units import inch
from io import BytesIO
import base64
from reportlab.platypus import Image
import plotly.io as pio
import sys
import argparse
# Load environment variables from .env file
load_dotenv()
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Salesforce connection
try:
sf = Salesforce(
username=os.getenv("SF_USERNAME"),
password=os.getenv("SF_PASSWORD"),
security_token=os.getenv("SF_SECURITY_TOKEN"),
instance_url=os.getenv("SF_INSTANCE_URL")
)
logger.info("β
Connected to Salesforce")
logger.info(f"Connected Salesforce user: {sf.username}")
except Exception as e:
logger.error(f"β Salesforce connection failed: {e}")
sf = None
# File to store forecast data
DATA_FILE = "/public/forecast_data.csv"
def prepare_prophet_data(usage_series):
end_date = datetime.now()
start_date = end_date - timedelta(days=len(usage_series) - 1)
dates = [start_date + timedelta(days=i) for i in range(len(usage_series))]
prophet_df = pd.DataFrame({'ds': dates, 'y': usage_series})
prophet_df['cap'] = 60
prophet_df['floor'] = 0
return prophet_df
def train_model_with_usage(usage_series):
prophet_df = prepare_prophet_data(usage_series)
model = Prophet(
yearly_seasonality=False,
weekly_seasonality=True,
daily_seasonality=True,
changepoint_prior_scale=0.002,
growth='logistic'
)
model.fit(prophet_df)
return model
def make_forecast(model, periods):
future = model.make_future_dataframe(periods=periods)
future['cap'] = 60
future['floor'] = 0
forecast = model.predict(future)
daily_forecasts = forecast['yhat'].tail(periods).tolist()
return round(sum(max(0, y) for y in daily_forecasts))
def get_daily_forecasts(model, periods=30):
future = model.make_future_dataframe(periods=periods)
future['cap'] = 60
future['floor'] = 0
forecast = model.predict(future)
daily_forecasts = forecast[['ds', 'yhat']].tail(periods)
daily_forecasts['yhat'] = daily_forecasts['yhat'].apply(lambda x: max(0, round(x)))
return daily_forecasts
def calculate_reorder_date(model, current_stock, lead_time_days=3, safety_threshold=0):
future = model.make_future_dataframe(periods=30)
future['cap'] = 60
future['floor'] = 0
forecast = model.predict(future)
daily_forecasts = forecast[['ds', 'yhat']].tail(30)
stock = current_stock
for _, row in daily_forecasts.iterrows():
daily_usage = max(0, round(row['yhat']))
stock -= daily_usage
if stock <= safety_threshold:
stockout_date = row['ds']
reorder_date = stockout_date - timedelta(days=lead_time_days)
if reorder_date < datetime.now():
reorder_date = datetime.now().date()
return reorder_date.strftime('%Y-%m-%d')
return None
def validate_usage_series(usage_str):
try:
usage_list = [float(x) for x in usage_str.split(',')]
logger.info(f"Input usage series length: {len(usage_list)}")
if len(usage_list) != 60:
return None, f"Usage series must contain exactly 60 values. Found {len(usage_list)} values."
if any(x < 0 for x in usage_list):
return None, "Usage values must be non-negative."
return usage_list, None
except:
return None, "Invalid usage series format. Please enter 60 comma-separated numbers."
def generate_forecast_pdf(forecast_data: dict, daily_forecasts: pd.DataFrame, alert_status: list, current_stock: int, forecast_7: int, forecast_14: int, forecast_30: int, fig_daily: go.Figure, fig_alerts: go.Figure, usage_series: str) -> BytesIO:
try:
logger.info("Starting PDF generation")
if not isinstance(forecast_data, dict) or not forecast_data:
logger.error("Invalid forecast_data: Must be a non-empty dictionary")
return None
if not isinstance(daily_forecasts, pd.DataFrame) or daily_forecasts.empty:
logger.error("Invalid daily_forecasts: Must be a non-empty DataFrame")
return None
if not isinstance(alert_status, list) or len(alert_status) != 3:
logger.error("Invalid alert_status: Must be a list of 3 booleans")
return None
if not isinstance(usage_series, str) or not usage_series:
logger.error("Invalid usage_series: Must be a non-empty string")
return None
if not isinstance(fig_daily, go.Figure) or not isinstance(fig_alerts, go.Figure):
logger.error("Invalid Plotly figures: fig_daily and fig_alerts must be valid go.Figure objects")
return None
pdf_file = BytesIO()
c = canvas.Canvas(pdf_file, pagesize=letter)
c.setFont("Helvetica", 12)
c.drawString(1 * inch, 10 * inch, "Consumables Forecast Report")
c.setFont("Helvetica", 10)
y_position = 9.5 * inch
logger.info("Initialized PDF canvas")
logger.info("Writing forecast data")
for key, value in forecast_data.items():
display_key = key.replace('_', ' ').title()
value_str = str(value)
c.drawString(1 * inch, y_position, f"{display_key}: {value_str}")
y_position -= 0.3 * inch
y_position -= 0.3 * inch
c.drawString(1 * inch, y_position, "Last 60 Days Usage (comma-separated):")
y_position -= 0.3 * inch
text_object = c.beginText(1 * inch, y_position)
text_object.setFont("Helvetica", 10)
text_lines = [usage_series[i:i+50] for i in range(0, len(usage_series), 50)]
for line in text_lines:
text_object.textLine(line)
y_position -= 0.3 * inch
c.drawText(text_object)
logger.info("Added usage series")
y_position -= 0.3 * inch
c.drawString(1 * inch, y_position, "Daily Forecast Values (Next 30 Days):")
y_position -= 0.3 * inch
daily_values = ", ".join([str(int(x)) for x in daily_forecasts['yhat'].tolist()])
text_object = c.beginText(1 * inch, y_position)
text_object.setFont("Helvetica", 10)
text_lines = [daily_values[i:i+50] for i in range(0, len(daily_values), 50)]
for line in text_lines:
text_object.textLine(line)
y_position -= 0.3 * inch
c.drawText(text_object)
logger.info("Added daily forecast values")
y_position -= 0.3 * inch
c.drawString(1 * inch, y_position, "Threshold Alerts:")
y_position -= 0.3 * inch
for forecast, period, alert in zip([forecast_7, forecast_14, forecast_30], ['7-day', '14-day', '30-day'], alert_status):
flag_indicator = "[Flag] " if alert else ""
if alert:
alert_text = f"{flag_indicator}Alert: Current stock ({current_stock}) is below {period} forecast ({forecast})."
else:
alert_text = f"No alert for {period} forecast."
c.drawString(1 * inch, y_position, alert_text)
y_position -= 0.3 * inch
logger.info("Added threshold alerts")
y_position -= 0.3 * inch
c.drawString(1 * inch, y_position, "Daily Forecast Visualization Data (Next 30 Days):")
y_position -= 0.3 * inch
for index, row in daily_forecasts.iterrows():
date_str = row['ds'].strftime('%Y-%m-%d')
forecast_value = int(row['yhat'])
c.drawString(1 * inch, y_position, f"Date: {date_str}, Forecast: {forecast_value} units")
y_position -= 0.3 * inch
if y_position < 1 * inch:
c.showPage()
c.setFont("Helvetica", 10)
y_position = 10 * inch
logger.info("Added daily forecast visualization data")
y_position -= 0.3 * inch
if y_position < 4 * inch:
c.showPage()
y_position = 10 * inch
c.drawString(1 * inch, y_position, "Daily Forecast Visualization (Next 30 Days):")
y_position -= 0.3 * inch
daily_chart_img = BytesIO()
try:
pio.write_image(fig_daily, daily_chart_img, format='png', width=600, height=400)
daily_chart_img.seek(0)
img = Image(daily_chart_img, width=6 * inch, height=4 * inch)
img.drawOn(c, 1 * inch, y_position - 4 * inch)
logger.info("Added daily forecast visualization image")
except Exception as e:
logger.error(f"Failed to export daily forecast image: {str(e)}")
c.drawString(1 * inch, y_position - 0.3 * inch, "Error: Could not include daily forecast visualization.")
y_position -= 4.5 * inch
if y_position < 2 * inch:
c.showPage()
c.setFont("Helvetica", 10)
y_position = 10 * inch
c.drawString(1 * inch, y_position, "Threshold Alerts Visualization Data:")
y_position -= 0.3 * inch
alert_data = pd.DataFrame({
'Category': ['Current Stock', '7-Day Forecast', '14-Day Forecast', '30-Day Forecast'],
'Units': [current_stock, forecast_7, forecast_14, forecast_30],
'Alert': [False] + alert_status
})
for _, row in alert_data.iterrows():
alert_text = f"Category: {row['Category']}, Units: {row['Units']}, Alert: {'Yes' if row['Alert'] else 'No'}"
c.drawString(1 * inch, y_position, alert_text)
y_position -= 0.3 * inch
if y_position < 1 * inch:
c.showPage()
c.setFont("Helvetica", 10)
y_position = 10 * inch
logger.info("Added threshold alerts visualization data")
y_position -= 0.3 * inch
if y_position < 4 * inch:
c.showPage()
y_position = 10 * inch
c.drawString(1 * inch, y_position, "Threshold Alerts Visualization:")
y_position -= 0.3 * inch
alerts_chart_img = BytesIO()
try:
pio.write_image(fig_alerts, alerts_chart_img, format='png', width=600, height=400)
alerts_chart_img.seek(0)
img = Image(alerts_chart_img, width=6 * inch, height=4 * inch)
img.drawOn(c, 1 * inch, y_position - 4 * inch)
logger.info("Added threshold alerts visualization image")
except Exception as e:
logger.error(f"Failed to export alerts visualization image: {str(e)}")
c.drawString(1 * inch, y_position - 0.3 * inch, "Error: Could not include threshold alerts visualization.")
c.showPage()
c.save()
pdf_file.seek(0)
logger.info("PDF generation completed successfully")
return pdf_file
except Exception as e:
logger.error(f"Error generating PDF: {str(e)}")
return None
def upload_pdf_to_salesforce(pdf_file: BytesIO, consumable_type: str, record_id: str) -> str:
try:
if not sf:
return None
encoded_pdf_data = base64.b64encode(pdf_file.getvalue()).decode('utf-8')
content_version_data = {
"Title": f"{consumable_type} - Consumables Forecast PDF",
"PathOnClient": f"{consumable_type}_Consumables_Forecast.pdf",
"VersionData": encoded_pdf_data,
"FirstPublishLocationId": record_id
}
content_version = sf.ContentVersion.create(content_version_data)
content_version_id = content_version["id"]
result = sf.query(f"SELECT Id, ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'")
if not result['records']:
return None
file_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/version/download/{content_version_id}"
return file_url
except Exception as e:
logger.error(f"Error uploading PDF to Salesforce: {str(e)}")
return None
def save_forecast_data(consumable_type, usage_series, current_stock, daily_forecasts):
try:
usage_str = ','.join(map(str, usage_series))
forecast_data = {
'consumable_type': [consumable_type],
'usage_series': [usage_str],
'current_stock': [current_stock],
'forecast_date': [daily_forecasts['ds'].astype(str).tolist()],
'forecast_yhat': [daily_forecasts['yhat'].tolist()]
}
df = pd.DataFrame(forecast_data)
if os.path.exists(DATA_FILE):
existing_df = pd.read_csv(DATA_FILE)
existing_df = existing_df[existing_df['consumable_type'] != consumable_type]
df = pd.concat([existing_df, df], ignore_index=True)
df.to_csv(DATA_FILE, index=False)
logger.info(f"Saved forecast data for {consumable_type} to {DATA_FILE}")
except Exception as e:
logger.error(f"Error saving forecast data: {str(e)}")
def load_forecast_data(consumable_type):
try:
if not os.path.exists(DATA_FILE):
logger.warning(f"No forecast data file found at {DATA_FILE}")
return None, None, None
df = pd.read_csv(DATA_FILE)
row = df[df['consumable_type'] == consumable_type]
if row.empty:
logger.warning(f"No data found for {consumable_type} in {DATA_FILE}")
return None, None, None
usage_series = [float(x) for x in row['usage_series'].iloc[0].split(',')]
current_stock = float(row['current_stock'].iloc[0])
forecast_dates = eval(row['forecast_date'].iloc[0])
forecast_yhat = eval(row['forecast_yhat'].iloc[0])
daily_forecasts = pd.DataFrame({'ds': pd.to_datetime(forecast_dates), 'yhat': forecast_yhat})
return usage_series, current_stock, daily_forecasts
except Exception as e:
logger.error(f"Error loading forecast data: {str(e)}")
return None, None, None
def process_forecast(consumable_type, usage_series, current_stock, is_automated=False):
usage_list, error = validate_usage_series(','.join(map(str, usage_series)))
if error:
logger.error(error)
if not is_automated:
st.error(error)
return None
try:
model = train_model_with_usage(usage_list)
except Exception as e:
logger.error(f"Error training model: {str(e)}")
if not is_automated:
st.error(f"Error training model: {str(e)}")
return None
forecast_7 = make_forecast(model, 7)
forecast_14 = make_forecast(model, 14)
forecast_30 = make_forecast(model, 30)
daily_forecasts = get_daily_forecasts(model, 30)
reorder_date = calculate_reorder_date(model, current_stock)
if not is_automated:
st.header("Forecast Results")
col1, col2, col3 = st.columns(3)
col1.metric("7-Day Forecast", f"{forecast_7} units")
col2.metric("14-Day Forecast", f"{forecast_14} units")
col3.metric("30-Day Forecast", f"{forecast_30} units")
st.header("Daily Forecast Values (Next 30 Days)")
daily_values = ", ".join([str(int(x)) for x in daily_forecasts['yhat'].tolist()])
st.text_area("Comma-separated daily forecasts", daily_values, height=100)
st.header("Threshold Alerts")
alert_status = []
for forecast, period in zip([forecast_7, forecast_14, forecast_30], ['7-day', '14-day', '30-day']):
if current_stock < forecast:
st.warning(f"Alert: Current stock ({current_stock}) is below {period} forecast ({forecast}). π©")
alert_status.append(True)
else:
st.info(f"No alert for {period} forecast.")
alert_status.append(False)
st.header("Order Suggestions")
st.write(f"**For 7 Days**: Order {max(0, forecast_7 - current_stock)} additional units.")
st.write(f"**For 14 Days**: Order {max(0, forecast_14 - current_stock)} additional units.")
st.write(f"**For 30 Days**: Order {max(0, forecast_30 - current_stock)} additional units.")
st.header("Reorder Information")
if any(alert_status):
st.warning(f"Reorder recommended. Suggested reorder date: {reorder_date if reorder_date else 'Not within 30 days'}")
else:
st.info("No reorder required within 30 days.")
st.header("Daily Forecast Visualization (Next 30 Days)")
fig_daily = go.Figure()
fig_daily.add_trace(go.Scatter(
x=daily_forecasts['ds'],
y=daily_forecasts['yhat'],
mode='lines+markers',
name='Daily Forecast',
line=dict(color='royalblue', width=2),
marker=dict(size=8, color='darkorange', line=dict(width=2, color='black')),
fill='tozeroy',
fillcolor='rgba(0, 176, 246, 0.2)'
))
y_values = daily_forecasts['yhat'].tolist()
fig_daily.update_layout(
title='Daily Consumable Usage Forecast (30 Days)',
xaxis_title='Date',
yaxis_title='Units',
template='plotly_white',
xaxis=dict(tickformat="%Y-%m-%d", tickangle=45, tickmode='auto', nticks=10),
yaxis=dict(range=[max(0, min(y_values) - 5), max(y_values) + 5], tickmode='linear', dtick=2),
showlegend=True,
legend=dict(x=0.01, y=0.99),
hovermode='x unified',
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
margin=dict(l=50, r=50, t=50, b=100)
)
st.plotly_chart(fig_daily, use_container_width=True)
st.header("Threshold Alerts Visualization")
alert_data = pd.DataFrame({
'Category': ['Current Stock', '7-Day Forecast', '14-Day Forecast', '30-Day Forecast'],
'Units': [current_stock, forecast_7, forecast_14, forecast_30],
'Alert': [False] + alert_status
})
fig_alerts = go.Figure()
fig_alerts.add_trace(go.Bar(
x=alert_data['Category'],
y=alert_data['Units'],
marker_color=['green'] + ['red' if alert else 'blue' for alert in alert_data['Alert'][1:]],
text=[f"π©" if alert else "" for alert in alert_data['Alert']],
textposition='auto'
))
fig_alerts.update_layout(
title='Stock vs Forecast with Alerts (π© indicates low stock)',
xaxis_title='Category',
yaxis_title='Units',
template='plotly_white'
)
st.plotly_chart(fig_alerts)
else:
alert_status = [current_stock < forecast for forecast in [forecast_7, forecast_14, forecast_30]]
fig_daily = go.Figure()
fig_daily.add_trace(go.Scatter(
x=daily_forecasts['ds'],
y=daily_forecasts['yhat'],
mode='lines+markers',
name='Daily Forecast',
line=dict(color='royalblue', width=2),
marker=dict(size=8, color='darkorange', line=dict(width=2, color='black')),
fill='tozeroy',
fillcolor='rgba(0, 176, 246, 0.2)'
))
y_values = daily_forecasts['yhat'].tolist()
fig_daily.update_layout(
title='Daily Consumable Usage Forecast (30 Days)',
xaxis_title='Date',
yaxis_title='Units',
template='plotly_white',
xaxis=dict(tickformat="%Y-%m-%d", tickangle=45, tickmode='auto', nticks=10),
yaxis=dict(range=[max(0, min(y_values) - 5), max(y_values) + 5], tickmode='linear', dtick=2),
showlegend=True,
legend=dict(x=0.01, y=0.99),
hovermode='x unified',
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
margin=dict(l=50, r=50, t=50, b=100)
)
alert_data = pd.DataFrame({
'Category': ['Current Stock', '7-Day Forecast', '14-Day Forecast', '30-Day Forecast'],
'Units': [current_stock, forecast_7, forecast_14, forecast_30],
'Alert': [False] + alert_status
})
fig_alerts = go.Figure()
fig_alerts.add_trace(go.Bar(
x=alert_data['Category'],
y=alert_data['Units'],
marker_color=['green'] + ['red' if alert else 'blue' for alert in alert_data['Alert'][1:]],
text=[f"π©" if alert else "" for alert in alert_data['Alert']],
textposition='auto'
))
fig_alerts.update_layout(
title='Stock vs Forecast with Alerts (π© indicates low stock)',
xaxis_title='Category',
yaxis_title='Units',
template='plotly_white'
)
if sf is not None:
try:
order_suggestions_text = f"7 Days: {max(0, forecast_7 - current_stock)} units, 14 Days: {max(0, forecast_14 - current_stock)} units, 30 Days: {max(0, forecast_30 - current_stock)} units"
forecast_data = {
"Consumable Type": consumable_type,
"Current Stock": current_stock,
"7-Day Forecast": f"{forecast_7} units",
"14-Day Forecast": f"{forecast_14} units",
"30-Day Forecast": f"{forecast_30} units",
"Order Suggestions": order_suggestions_text,
"Reorder Recommendation": "Yes" if any(alert_status) else "No",
"Reorder Date": reorder_date if reorder_date else "Not within 30 days"
}
pdf_file = generate_forecast_pdf(forecast_data, daily_forecasts, alert_status, current_stock, forecast_7, forecast_14, forecast_30, fig_daily, fig_alerts, ','.join(map(str, usage_series)))
sf_data = {
'Consumable_Type__c': consumable_type,
'Forecast_Period__c': '7days',
'ForeCasted_Quantity__c': float(forecast_7),
'ForeCasted_Quantity_14days__c': float(forecast_14),
'ForeCasted_Quantity_30days__c': float(forecast_30),
'Current_Stock__c': float(current_stock),
'Order_Suggestions__c': order_suggestions_text,
'Reorder_Recommendation__c': any(alert_status),
'Reorder_Date__c': reorder_date,
'Pdf_report__c': ''
}
result = sf.Consumables_Forecaste__c.create(sf_data)
logger.info(f"Salesforce record created: {result}")
if pdf_file:
pdf_url = upload_pdf_to_salesforce(pdf_file, consumable_type, result['id'])
if pdf_url:
sf.Consumables_Forecaste__c.update(
result['id'],
{"Pdf_report__c": pdf_url}
)
logger.info(f"PDF uploaded to Salesforce: {pdf_url}")
logger.info(f"PDF Report generated and uploaded to Salesforce: {pdf_url}")
else:
logger.error("Failed to upload PDF to Salesforce")
if not is_automated:
st.error("Failed to upload PDF to Salesforce")
else:
logger.error("Failed to generate PDF")
if not is_automated:
st.error("Failed to generate PDF")
except Exception as e:
logger.error(f"Error creating Salesforce record or uploading PDF: {e}", exc_info=True)
if not is_automated:
st.error(f"Error saving to Salesforce: {str(e)}")
return None
return daily_forecasts
def automate_daily_forecast():
consumable_types = ['Filters', 'Reagents', 'Vials']
for consumable_type in consumable_types:
logger.info(f"Processing automated forecast for {consumable_type}")
usage_series, current_stock, prev_daily_forecasts = load_forecast_data(consumable_type)
if usage_series is None or current_stock is None or prev_daily_forecasts is None:
logger.warning(f"No previous data for {consumable_type}. Skipping automation.")
continue
# Shift usage series: Remove oldest day, append forecasted usage for today
next_day_usage = prev_daily_forecasts['yhat'].iloc[0] # Forecasted usage for today
usage_series = usage_series[1:] + [next_day_usage]
# Update stock: Subtract yesterday's forecasted usage
yesterday_usage = prev_daily_forecasts['yhat'].iloc[0]
current_stock = max(0, current_stock - yesterday_usage)
# Generate new forecast with updated data
daily_forecasts = process_forecast(consumable_type, usage_series, current_stock, is_automated=True)
if daily_forecasts is not None:
save_forecast_data(consumable_type, usage_series, current_stock, daily_forecasts)
logger.info(f"Completed automated forecast for {consumable_type}")
else:
logger.error(f"Failed to process forecast for {consumable_type}")
def main():
parser = argparse.ArgumentParser(description="SmartLab Consumables Forecast")
parser.add_argument('--automated', action='store_true', help="Run in automated mode")
args = parser.parse_args()
if args.automated:
automate_daily_forecast()
return
st.title("SmartLab Consumables Forecast")
st.header("Input Parameters")
consumable_type_label = st.selectbox("Consumable Type", ['Filters', 'Reagents', 'Vials'])
consumable_type = consumable_type_label
usage_series = st.text_input("Last 60 Days Usage (comma-separated)", "")
current_stock = st.number_input("Current Stock", min_value=0, value=0)
if st.button("Generate Forecast"):
usage_list, error = validate_usage_series(usage_series)
if error:
st.error(error)
return
daily_forecasts = process_forecast(consumable_type, usage_list, current_stock, is_automated=False)
if daily_forecasts is not None:
save_forecast_data(consumable_type, usage_list, current_stock, daily_forecasts)
if __name__ == "__main__":
main()
sf = None |