File size: 13,917 Bytes
4780a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import gradio as gr
import asyncio
from datetime import datetime
from specter_legal_assistant.rag_manager import rag_manager
from specter_legal_assistant.config import settings
from specter_legal_assistant.utils import format_response_for_gradio
from pathlib import Path
import json

async def legal_query(query: str, language: str = "english") -> str:
    """Handle legal queries through RAG system"""
    try:
        if not query.strip():
            return "Please enter a legal question."
        
        # Get context from RAG system
        context = rag_manager.get_relevant_context(query, k=3)
        
        # Prepare prompt
        prompt = f"""You are a helpful legal assistant providing clear, practical advice about Indian law. Provide a natural, empathetic response that directly addresses their specific situation.\n\nUser's Question: {query}\n\nLegal Information:\n{context}\n\nProvide a clear, practical response that explains their legal options and applicable laws in natural language."""
        
        # Use Groq client for response generation
        from specter_legal_assistant import groq_client
        response = groq_client.chat.completions.create(
            model="llama-3.3-70b-versatile",
            messages=[
                {"role": "system", "content": "You are a helpful legal assistant that provides clear, accurate information about Indian law."},
                {"role": "user", "content": prompt}
            ],
            max_tokens=500,
            temperature=0.7,
        )
        
        result = response.choices[0].message.content
        return format_response_for_gradio(result)
    except Exception as e:
        return f"I apologize, but I encountered an error while processing your request. Please try again or rephrase your question."

def generate_fir(name: str, location: str, details: str) -> str:
    """Generate FIR document"""
    try:
        from specter_legal_assistant import generate_fir_pdf
        filename = generate_fir_pdf(name, location, details)
        file_path = Path("static") / filename
        return str(file_path.absolute())
    except Exception as e:
        return f"Error generating FIR: {str(e)}"

def generate_rental_agreement(landlord_name: str, tenant_name: str, property_address: str, 
                            rent_amount: float, security_deposit: float, 
                            lease_start_date: str, lease_end_date: str, 
                            terms_and_conditions: str) -> str:
    """Generate Rental Agreement document"""
    try:
        from specter_legal_assistant import RentalAgreementData, generate_rental_agreement
        data = RentalAgreementData(
            landlord_name=landlord_name,
            tenant_name=tenant_name,
            property_address=property_address,
            rent_amount=rent_amount,
            security_deposit=security_deposit,
            lease_start_date=lease_start_date,
            lease_end_date=lease_end_date,
            terms_and_conditions=terms_and_conditions
        )
        filename = generate_rental_agreement(data)
        file_path = Path("static") / filename
        return str(file_path.absolute())
    except Exception as e:
        return f"Error generating Rental Agreement: {str(e)}"

def generate_consumer_complaint(complainant_name: str, complainant_address: str,
                             complainant_contact: str, company_name: str,
                             company_address: str, product_service_details: str,
                             complaint_details: str, desired_resolution: str) -> str:
    """Generate Consumer Complaint document"""
    try:
        from specter_legal_assistant import ConsumerComplaintData, generate_consumer_complaint
        data = ConsumerComplaintData(
            complainant_name=complainant_name,
            complainant_address=complainant_address,
            complainant_contact=complainant_contact,
            company_name=company_name,
            company_address=company_address,
            product_service_details=product_service_details,
            complaint_details=complaint_details,
            desired_resolution=desired_resolution
        )
        filename = generate_consumer_complaint(data)
        file_path = Path("static") / filename
        return str(file_path.absolute())
    except Exception as e:
        return f"Error generating Consumer Complaint: {str(e)}"

def create_gradio_interface():
    # Create the Gradio interface with improved design
    with gr.Blocks(
        title="Legal Assistant AI", 
        theme=gr.themes.Soft(),
        css="""
        .gradio-container {
            max-width: 1200px !important;
            margin: auto !important;
        }
        .main-header {
            text-align: center;
            padding: 20px;
            background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
            color: white;
            border-radius: 10px;
            margin-bottom: 20px;
        }
        """
    ) as interface:
        
        # Header
        gr.HTML("""
        <div class="main-header">
            <h1>πŸ›οΈ Legal Assistant AI</h1>
            <p>Get instant legal advice and generate legal documents for Indian law</p>
        </div>
        """)
        
        with gr.Tabs():
            # Legal Query Tab
            with gr.Tab("πŸ€– Ask Legal Questions"):
                with gr.Row():
                    with gr.Column(scale=2):
                        query_input = gr.Textbox(
                            label="Enter your legal question", 
                            lines=4,
                            placeholder="Example: What are my rights if I'm arrested by the police?"
                        )
                        language_dropdown = gr.Dropdown(
                            choices=["english", "hindi"], 
                            value="english",
                            label="Language"
                        )
                        query_button = gr.Button("Get Legal Advice", variant="primary", size="lg")
                    with gr.Column(scale=1):
                        gr.Markdown("""
                        ### πŸ’‘ Tips for better responses:
                        - Be specific about your situation
                        - Mention relevant details (location, circumstances)
                        - Ask about specific laws or procedures
                        - Include any relevant dates or events
                        """)
                
                query_output = gr.Textbox(
                    label="Legal Advice", 
                    lines=8,
                    interactive=False,
                    show_copy_button=True
                )
                
                query_button.click(
                    fn=lambda q, l: asyncio.run(legal_query(q, l)),
                    inputs=[query_input, language_dropdown],
                    outputs=query_output
                )

            # FIR Generation Tab
            with gr.Tab("πŸ“ Generate FIR"):
                with gr.Row():
                    with gr.Column(scale=2):
                        gr.Markdown("### First Information Report (FIR) Generator")
                        fir_name = gr.Textbox(
                            label="Your Full Name", 
                            placeholder="Enter your complete name"
                        )
                        fir_location = gr.Textbox(
                            label="Location of Incident", 
                            placeholder="Where did the incident occur?"
                        )
                        fir_details = gr.Textbox(
                            label="Incident Details", 
                            lines=4,
                            placeholder="Describe what happened in detail..."
                        )
                        fir_button = gr.Button("Generate FIR Document", variant="primary")
                    with gr.Column(scale=1):
                        gr.Markdown("""
                        ### πŸ“‹ FIR Information:
                        - Used to report criminal offenses
                        - Filed at the nearest police station
                        - Required for legal proceedings
                        - Contains complainant and incident details
                        """)
                
                fir_output = gr.File(label="Download Generated FIR", file_count="single")
                fir_button.click(
                    fn=generate_fir,
                    inputs=[fir_name, fir_location, fir_details],
                    outputs=fir_output
                )

            # Rental Agreement Tab
            with gr.Tab("🏠 Rental Agreement"):
                with gr.Row():
                    with gr.Column(scale=2):
                        gr.Markdown("### Rental Agreement Generator")
                        landlord_name = gr.Textbox(label="Landlord Name", placeholder="Enter landlord's full name")
                        tenant_name = gr.Textbox(label="Tenant Name", placeholder="Enter tenant's full name")
                        property_address = gr.Textbox(
                            label="Property Address", 
                            lines=2,
                            placeholder="Complete address of the rental property"
                        )
                        rent_amount = gr.Number(label="Monthly Rent Amount (β‚Ή)", precision=2)
                        security_deposit = gr.Number(label="Security Deposit Amount (β‚Ή)", precision=2)
                        lease_start = gr.Textbox(label="Lease Start Date (DD-MM-YYYY)", placeholder="01-01-2024")
                        lease_end = gr.Textbox(label="Lease End Date (DD-MM-YYYY)", placeholder="31-12-2024")
                        terms = gr.Textbox(
                            label="Terms and Conditions", 
                            lines=3,
                            placeholder="Additional terms and conditions..."
                        )
                        rental_button = gr.Button("Generate Rental Agreement", variant="primary")
                    with gr.Column(scale=1):
                        gr.Markdown("""
                        ### πŸ“„ Rental Agreement Info:
                        - Legal contract between landlord and tenant
                        - Defines rent, deposit, and lease terms
                        - Protects both parties' rights
                        - Required for rental disputes
                        """)
                
                rental_output = gr.File(label="Download Rental Agreement", file_count="single")
                rental_button.click(
                    fn=generate_rental_agreement,
                    inputs=[landlord_name, tenant_name, property_address,
                           rent_amount, security_deposit, lease_start,
                           lease_end, terms],
                    outputs=rental_output
                )

            # Consumer Complaint Tab
            with gr.Tab("πŸ›’ Consumer Complaint"):
                with gr.Row():
                    with gr.Column(scale=2):
                        gr.Markdown("### Consumer Complaint Generator")
                        comp_name = gr.Textbox(label="Your Name", placeholder="Enter your full name")
                        comp_address = gr.Textbox(
                            label="Your Address", 
                            lines=2,
                            placeholder="Your complete address"
                        )
                        comp_contact = gr.Textbox(label="Your Contact Number", placeholder="+91-XXXXXXXXXX")
                        company_name = gr.Textbox(label="Company Name", placeholder="Name of the company you're complaining against")
                        company_addr = gr.Textbox(
                            label="Company Address", 
                            lines=2,
                            placeholder="Company's address"
                        )
                        product_details = gr.Textbox(label="Product/Service Details", placeholder="What product or service are you complaining about?")
                        complaint_details = gr.Textbox(
                            label="Complaint Details", 
                            lines=3,
                            placeholder="Describe your complaint in detail..."
                        )
                        resolution = gr.Textbox(
                            label="Desired Resolution", 
                            lines=2,
                            placeholder="What resolution do you want?"
                        )
                        complaint_button = gr.Button("Generate Consumer Complaint", variant="primary")
                    with gr.Column(scale=1):
                        gr.Markdown("""
                        ### πŸ›‘οΈ Consumer Rights:
                        - Right to safety and quality
                        - Right to information
                        - Right to choose
                        - Right to redressal
                        - Right to be heard
                        """)
                
                complaint_output = gr.File(label="Download Consumer Complaint", file_count="single")
                complaint_button.click(
                    fn=generate_consumer_complaint,
                    inputs=[comp_name, comp_address, comp_contact,
                           company_name, company_addr, product_details,
                           complaint_details, resolution],
                    outputs=complaint_output
                )

    return interface

if __name__ == "__main__":
    interface = create_gradio_interface()
    interface.launch(
        server_name=settings.GRADIO_SERVER_NAME,
        server_port=settings.GRADIO_SERVER_PORT,
        share=settings.GRADIO_SHARE
    )