File size: 4,652 Bytes
b145c13
 
 
e0cfc5c
b145c13
 
 
 
 
 
 
9241860
 
 
 
e0cfc5c
939dab3
e0cfc5c
 
 
 
 
 
b145c13
9241860
 
 
e0cfc5c
939dab3
e0cfc5c
 
 
 
 
 
b145c13
e0cfc5c
b145c13
 
 
 
e0cfc5c
 
 
 
 
 
 
 
 
 
 
 
b145c13
9241860
 
 
 
 
e0cfc5c
9241860
b145c13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9241860
b145c13
 
9241860
b145c13
 
 
9241860
b145c13
 
 
 
 
 
9241860
b145c13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import cv2
import gradio as gr
import os
import requests
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F

# Automatically download required files
# 1. data_loader_cache.py from GitHub
if not os.path.exists("data_loader_cache.py"):
    print("Downloading data_loader_cache.py...")
    try:
        response = requests.get("https://raw.githubusercontent.com/xuebinqin/DIS/main/DIS/IS-Net/data_loader_cache.py")
        response.raise_for_status()
        with open("data_loader_cache.py", "wb") as f:
            f.write(response.content)
    except requests.RequestException as e:
        print(f"Failed to download data_loader_cache.py: {e}")
        raise

# 2. models.py from GitHub
if not os.path.exists("models.py"):
    print("Downloading models.py...")
    try:
        response = requests.get("https://raw.githubusercontent.com/xuebinqin/DIS/main/DIS/IS-Net/models.py")
        response.raise_for_status()
        with open("models.py", "wb") as f:
            f.write(response.content)
    except requests.RequestException as e:
        print(f"Failed to download models.py: {e}")
        raise

# 3. isnet.pth from Hugging Face Git LFS (direct URL from screenshot)
if not os.path.exists("saved_models"):
    os.makedirs("saved_models")
isnet_path = "saved_models/isnet.pth"
if not os.path.exists(isnet_path):
    print("Downloading isnet.pth from Hugging Face Git LFS...")
    try:
        lfs_url = "https://cdn-lfs.huggingface.co/repos/e0/a8/e0a889743a78391b48db7c4c0b4de1963ee320cb10934c75a32481dc5af9c61/e0a889743a78391b48db7c4c0b4de1963ee320cb10934c75a32481dc5af9c61?download=true"
        response = requests.get(lfs_url, stream=True)
        response.raise_for_status()
        with open(isnet_path, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                if chunk:
                    f.write(chunk)
    except requests.RequestException as e:
        print(f"Failed to download isnet.pth: {e}")
        raise

# Project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *

# Helpers
device = 'cpu'

class GOSNormalize(object):
    def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
        self.mean = mean
        self.std = std

    def __call__(self, image):
        image = normalize(image, self.mean, self.std)
        return image

transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])

def load_image(im_path, hypar):
    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im, 255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0)

def build_model(hypar, device):
    net = hypar["model"]
    net.to(device)
    if hypar["restore_model"]:
        net.load_state_dict(torch.load(os.path.join(hypar["model_path"], hypar["restore_model"]), map_location=device))
    net.eval()
    return net

def predict(net, inputs_val, shapes_val, hypar, device):
    net.eval()
    inputs_val = inputs_val.type(torch.FloatTensor).to(device)
    with torch.no_grad():
        inputs_val_v = Variable(inputs_val)
        ds_val = net(inputs_val_v)[0]
        pred_val = ds_val[0][0, :, :, :]
        pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear'))
        ma = torch.max(pred_val)
        mi = torch.min(pred_val)
        pred_val = (pred_val - mi) / (ma - mi)
        return (pred_val.cpu().numpy() * 255).astype(np.uint8)

# Set Parameters
hypar = {
    "model_path": "saved_models",
    "restore_model": "isnet.pth",
    "cache_size": [512, 512],
    "input_size": [512, 512],
    "crop_size": [512, 512],
    "model": ISNetDIS()
}

# Build Model
net = build_model(hypar, device)

def inference(image):
    image_path = image
    image_tensor, orig_size = load_image(image_path, hypar)
    mask = predict(net, image_tensor, orig_size, hypar, device)
    pil_mask = Image.fromarray(mask).convert('L')
    im_rgb = Image.open(image).convert("RGB")
    im_rgba = im_rgb.copy()
    im_rgba.putalpha(pil_mask)
    return [im_rgba, pil_mask]

title = "Dichotomous Image Segmentation"
description = "Upload an image to remove its background."

interface = gr.Interface(
    fn=inference,
    inputs=gr.Image(type='filepath'),
    outputs=[gr.Image(type='filepath', format="png"), gr.Image(type='filepath', format="png")],
    title=title,
    description=description,
    flagging_mode="never",
    cache_mode="lazy"
).launch()