Spaces:
Running
Running
Upload 9 files
Browse files- .huggingface-space +9 -0
- LICENSE +21 -0
- README.md +67 -14
- app.py +232 -0
- app_hf.py +222 -0
- example_client.py +151 -0
- requirements.txt +9 -0
- requirements_hf.txt +7 -0
- test_local.py +97 -0
.huggingface-space
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
title: Nomic Vision Embedding MCP Server
|
2 |
+
emoji: 🖼️
|
3 |
+
colorFrom: blue
|
4 |
+
colorTo: indigo
|
5 |
+
sdk: gradio
|
6 |
+
sdk_version: 5.26.0
|
7 |
+
app_file: app_hf.py
|
8 |
+
pinned: false
|
9 |
+
license: mit
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2025
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,14 +1,67 @@
|
|
1 |
-
---
|
2 |
-
title: Nomic
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Nomic MCP Tool
|
3 |
+
emoji: 🗂️
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: pink
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: "5.26.0"
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
# Nomic Vision Embedding MCP Server
|
12 |
+
|
13 |
+
This is a Model Context Protocol (MCP) server for the [nomic-ai/nomic-embed-vision-v1.5](https://huggingface.co/nomic-ai/nomic-embed-vision-v1.5) image embedding model, deployed on Huggingface Spaces using Gradio.
|
14 |
+
|
15 |
+
## Features
|
16 |
+
|
17 |
+
- Generate embeddings for images using the nomic-ai/nomic-embed-vision-v1.5 model
|
18 |
+
- Expose embedding functionality through a Gradio web interface
|
19 |
+
- Implement the Model Context Protocol (MCP) to allow integration with MCP clients
|
20 |
+
|
21 |
+
## How It Works
|
22 |
+
|
23 |
+
This application provides two interfaces:
|
24 |
+
|
25 |
+
1. **Web Interface**: A Gradio UI that allows users to upload images and view the generated embeddings
|
26 |
+
2. **MCP Interface**: An implementation of the Model Context Protocol that exposes the embedding functionality as a tool
|
27 |
+
|
28 |
+
## MCP Tool
|
29 |
+
|
30 |
+
The server exposes the following MCP tool:
|
31 |
+
|
32 |
+
- **embed_image**: Generate embeddings for an image
|
33 |
+
- Input:
|
34 |
+
- `image_url`: URL of the image to embed, OR
|
35 |
+
- `image_data`: Base64-encoded image data
|
36 |
+
- Output: JSON object containing the embedding vector and its dimension
|
37 |
+
|
38 |
+
## Deployment
|
39 |
+
|
40 |
+
This application is designed to be deployed on Huggingface Spaces. To deploy:
|
41 |
+
|
42 |
+
1. Create a new Space on Huggingface Spaces with the Gradio SDK
|
43 |
+
2. Upload these files to your Space
|
44 |
+
3. The Space will automatically build and deploy the application
|
45 |
+
|
46 |
+
## Local Development
|
47 |
+
|
48 |
+
To run this application locally:
|
49 |
+
|
50 |
+
1. Clone this repository
|
51 |
+
2. Install the dependencies: `pip install -r requirements.txt`
|
52 |
+
3. Run the application: `python app.py`
|
53 |
+
4. Open your browser at http://localhost:7860
|
54 |
+
|
55 |
+
## Requirements
|
56 |
+
|
57 |
+
- Python 3.7+
|
58 |
+
- Gradio 4.0+
|
59 |
+
- Transformers
|
60 |
+
- PyTorch
|
61 |
+
- Pillow
|
62 |
+
- NumPy
|
63 |
+
- Model Context Protocol library
|
64 |
+
|
65 |
+
## License
|
66 |
+
|
67 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
app.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
import base64
|
8 |
+
from io import BytesIO
|
9 |
+
import requests
|
10 |
+
from typing import Dict, List, Any, Optional
|
11 |
+
from transformers.pipelines import pipeline
|
12 |
+
|
13 |
+
# MCP imports
|
14 |
+
from modelcontextprotocol.server import Server
|
15 |
+
from modelcontextprotocol.server.gradio import GradioServerTransport
|
16 |
+
from modelcontextprotocol.types import (
|
17 |
+
CallToolRequestSchema,
|
18 |
+
ErrorCode,
|
19 |
+
ListToolsRequestSchema,
|
20 |
+
McpError,
|
21 |
+
)
|
22 |
+
|
23 |
+
# Initialize the model
|
24 |
+
model = pipeline("image-feature-extraction", model="nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
25 |
+
|
26 |
+
# Function to generate embeddings from an image
|
27 |
+
def generate_embedding(image):
|
28 |
+
if image is None:
|
29 |
+
return None
|
30 |
+
|
31 |
+
# Convert to PIL Image if needed
|
32 |
+
if not isinstance(image, Image.Image):
|
33 |
+
image = Image.fromarray(image)
|
34 |
+
|
35 |
+
try:
|
36 |
+
# Generate embedding using the transformers pipeline
|
37 |
+
result = model(image)
|
38 |
+
|
39 |
+
# Process the result based on its type
|
40 |
+
embedding_list = None
|
41 |
+
|
42 |
+
# Handle different possible output types
|
43 |
+
if isinstance(result, torch.Tensor):
|
44 |
+
embedding_list = result.detach().cpu().numpy().flatten().tolist()
|
45 |
+
elif isinstance(result, np.ndarray):
|
46 |
+
embedding_list = result.flatten().tolist()
|
47 |
+
elif isinstance(result, list):
|
48 |
+
# If it's a list of tensors or arrays
|
49 |
+
if result and isinstance(result[0], (torch.Tensor, np.ndarray)):
|
50 |
+
embedding_list = result[0].flatten().tolist() if hasattr(result[0], 'flatten') else result[0]
|
51 |
+
else:
|
52 |
+
embedding_list = result
|
53 |
+
else:
|
54 |
+
# Try to convert to a list as a last resort
|
55 |
+
try:
|
56 |
+
if result is not None:
|
57 |
+
embedding_list = list(result)
|
58 |
+
else:
|
59 |
+
print("Result is None")
|
60 |
+
return None
|
61 |
+
except:
|
62 |
+
print(f"Couldn't convert result of type {type(result)} to list")
|
63 |
+
return None
|
64 |
+
|
65 |
+
# Ensure we have a valid embedding list
|
66 |
+
if embedding_list is None:
|
67 |
+
return None
|
68 |
+
|
69 |
+
# Calculate embedding dimension
|
70 |
+
embedding_dim = len(embedding_list)
|
71 |
+
|
72 |
+
return {
|
73 |
+
"embedding": embedding_list,
|
74 |
+
"dimension": embedding_dim
|
75 |
+
}
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Error generating embedding: {str(e)}")
|
78 |
+
return None
|
79 |
+
|
80 |
+
return {
|
81 |
+
"embedding": embedding_list,
|
82 |
+
"dimension": embedding_dim
|
83 |
+
}
|
84 |
+
|
85 |
+
# Gradio Interface
|
86 |
+
with gr.Blocks() as demo:
|
87 |
+
gr.Markdown("# Nomic Vision Embedding Model (nomic-ai/nomic-embed-vision-v1.5)")
|
88 |
+
gr.Markdown("Upload an image to generate embeddings using the Nomic Vision model.")
|
89 |
+
|
90 |
+
with gr.Row():
|
91 |
+
with gr.Column():
|
92 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
93 |
+
embed_btn = gr.Button("Generate Embedding")
|
94 |
+
|
95 |
+
with gr.Column():
|
96 |
+
embedding_json = gr.JSON(label="Embedding Output")
|
97 |
+
embedding_dim = gr.Textbox(label="Embedding Dimension")
|
98 |
+
|
99 |
+
def update_embedding(img):
|
100 |
+
result = generate_embedding(img)
|
101 |
+
if result is None:
|
102 |
+
return {
|
103 |
+
embedding_json: None,
|
104 |
+
embedding_dim: "No embedding generated"
|
105 |
+
}
|
106 |
+
return {
|
107 |
+
embedding_json: result,
|
108 |
+
embedding_dim: f"Dimension: {len(result['embedding'])}"
|
109 |
+
}
|
110 |
+
|
111 |
+
embed_btn.click(
|
112 |
+
fn=update_embedding,
|
113 |
+
inputs=[input_image],
|
114 |
+
outputs=[embedding_json, embedding_dim]
|
115 |
+
)
|
116 |
+
|
117 |
+
# MCP Server Implementation
|
118 |
+
class NomicEmbeddingServer:
|
119 |
+
def __init__(self):
|
120 |
+
self.server = Server(
|
121 |
+
{
|
122 |
+
"name": "nomic-embedding-server",
|
123 |
+
"version": "0.1.0",
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"capabilities": {
|
127 |
+
"tools": {},
|
128 |
+
},
|
129 |
+
}
|
130 |
+
)
|
131 |
+
|
132 |
+
self.setup_tool_handlers()
|
133 |
+
|
134 |
+
# Error handling
|
135 |
+
self.server.onerror = lambda error: print(f"[MCP Error] {error}")
|
136 |
+
|
137 |
+
def setup_tool_handlers(self):
|
138 |
+
self.server.set_request_handler(ListToolsRequestSchema, self.handle_list_tools)
|
139 |
+
self.server.set_request_handler(CallToolRequestSchema, self.handle_call_tool)
|
140 |
+
|
141 |
+
async def handle_list_tools(self, request):
|
142 |
+
return {
|
143 |
+
"tools": [
|
144 |
+
{
|
145 |
+
"name": "embed_image",
|
146 |
+
"description": "Generate embeddings for an image using nomic-ai/nomic-embed-vision-v1.5",
|
147 |
+
"inputSchema": {
|
148 |
+
"type": "object",
|
149 |
+
"properties": {
|
150 |
+
"image_url": {
|
151 |
+
"type": "string",
|
152 |
+
"description": "URL of the image to embed",
|
153 |
+
},
|
154 |
+
"image_data": {
|
155 |
+
"type": "string",
|
156 |
+
"description": "Base64-encoded image data (alternative to image_url)",
|
157 |
+
},
|
158 |
+
},
|
159 |
+
"anyOf": [
|
160 |
+
{"required": ["image_url"]},
|
161 |
+
{"required": ["image_data"]},
|
162 |
+
],
|
163 |
+
},
|
164 |
+
}
|
165 |
+
]
|
166 |
+
}
|
167 |
+
|
168 |
+
async def handle_call_tool(self, request):
|
169 |
+
if request.params.name != "embed_image":
|
170 |
+
raise McpError(
|
171 |
+
ErrorCode.MethodNotFound,
|
172 |
+
f"Unknown tool: {request.params.name}"
|
173 |
+
)
|
174 |
+
|
175 |
+
args = request.params.arguments
|
176 |
+
|
177 |
+
try:
|
178 |
+
# Handle image from URL
|
179 |
+
if "image_url" in args:
|
180 |
+
import requests
|
181 |
+
from io import BytesIO
|
182 |
+
|
183 |
+
response = requests.get(args["image_url"])
|
184 |
+
image = Image.open(BytesIO(response.content))
|
185 |
+
|
186 |
+
# Handle image from base64 data
|
187 |
+
elif "image_data" in args:
|
188 |
+
import base64
|
189 |
+
from io import BytesIO
|
190 |
+
|
191 |
+
image_data = base64.b64decode(args["image_data"])
|
192 |
+
image = Image.open(BytesIO(image_data))
|
193 |
+
|
194 |
+
else:
|
195 |
+
raise McpError(
|
196 |
+
ErrorCode.InvalidParams,
|
197 |
+
"Either image_url or image_data must be provided"
|
198 |
+
)
|
199 |
+
|
200 |
+
# Generate embedding
|
201 |
+
result = generate_embedding(image)
|
202 |
+
|
203 |
+
return {
|
204 |
+
"content": [
|
205 |
+
{
|
206 |
+
"type": "text",
|
207 |
+
"text": json.dumps(result, indent=2),
|
208 |
+
}
|
209 |
+
]
|
210 |
+
}
|
211 |
+
|
212 |
+
except Exception as e:
|
213 |
+
return {
|
214 |
+
"content": [
|
215 |
+
{
|
216 |
+
"type": "text",
|
217 |
+
"text": f"Error generating embedding: {str(e)}",
|
218 |
+
}
|
219 |
+
],
|
220 |
+
"isError": True,
|
221 |
+
}
|
222 |
+
|
223 |
+
# Initialize and run the MCP server
|
224 |
+
embedding_server = NomicEmbeddingServer()
|
225 |
+
|
226 |
+
# Connect the MCP server to the Gradio app
|
227 |
+
transport = GradioServerTransport(demo)
|
228 |
+
embedding_server.server.connect(transport)
|
229 |
+
|
230 |
+
# Launch the Gradio app
|
231 |
+
if __name__ == "__main__":
|
232 |
+
demo.launch(mcp_server=True)
|
app_hf.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
import base64
|
8 |
+
from io import BytesIO
|
9 |
+
import requests
|
10 |
+
from typing import Dict, List, Any, Optional
|
11 |
+
from transformers.pipelines import pipeline
|
12 |
+
|
13 |
+
# MCP imports
|
14 |
+
from modelcontextprotocol.server import Server
|
15 |
+
from modelcontextprotocol.server.gradio import GradioServerTransport
|
16 |
+
from modelcontextprotocol.types import (
|
17 |
+
CallToolRequestSchema,
|
18 |
+
ErrorCode,
|
19 |
+
ListToolsRequestSchema,
|
20 |
+
McpError,
|
21 |
+
)
|
22 |
+
|
23 |
+
# Initialize the model
|
24 |
+
model = pipeline("image-feature-extraction", model="nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
25 |
+
|
26 |
+
# Function to generate embeddings from an image
|
27 |
+
def generate_embedding(image):
|
28 |
+
if image is None:
|
29 |
+
return None
|
30 |
+
|
31 |
+
# Convert to PIL Image if needed
|
32 |
+
if not isinstance(image, Image.Image):
|
33 |
+
image = Image.fromarray(image)
|
34 |
+
|
35 |
+
try:
|
36 |
+
# Generate embedding using the transformers pipeline
|
37 |
+
result = model(image)
|
38 |
+
|
39 |
+
# Process the result based on its type
|
40 |
+
embedding_list = None
|
41 |
+
|
42 |
+
# Handle different possible output types
|
43 |
+
if isinstance(result, torch.Tensor):
|
44 |
+
embedding_list = result.detach().cpu().numpy().flatten().tolist()
|
45 |
+
elif isinstance(result, np.ndarray):
|
46 |
+
embedding_list = result.flatten().tolist()
|
47 |
+
elif isinstance(result, list):
|
48 |
+
# If it's a list of tensors or arrays
|
49 |
+
if result and isinstance(result[0], (torch.Tensor, np.ndarray)):
|
50 |
+
embedding_list = result[0].flatten().tolist() if hasattr(result[0], 'flatten') else result[0]
|
51 |
+
else:
|
52 |
+
embedding_list = result
|
53 |
+
else:
|
54 |
+
# Try to convert to a list as a last resort
|
55 |
+
try:
|
56 |
+
if result is not None:
|
57 |
+
embedding_list = list(result)
|
58 |
+
else:
|
59 |
+
print("Result is None")
|
60 |
+
return None
|
61 |
+
except:
|
62 |
+
print(f"Couldn't convert result of type {type(result)} to list")
|
63 |
+
return None
|
64 |
+
|
65 |
+
# Ensure we have a valid embedding list
|
66 |
+
if embedding_list is None:
|
67 |
+
return None
|
68 |
+
|
69 |
+
# Calculate embedding dimension
|
70 |
+
embedding_dim = len(embedding_list)
|
71 |
+
|
72 |
+
return {
|
73 |
+
"embedding": embedding_list,
|
74 |
+
"dimension": embedding_dim
|
75 |
+
}
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Error generating embedding: {str(e)}")
|
78 |
+
return None
|
79 |
+
|
80 |
+
# Gradio Interface
|
81 |
+
with gr.Blocks() as demo:
|
82 |
+
gr.Markdown("# Nomic Vision Embedding Model (nomic-ai/nomic-embed-vision-v1.5)")
|
83 |
+
gr.Markdown("Upload an image to generate embeddings using the Nomic Vision model.")
|
84 |
+
|
85 |
+
with gr.Row():
|
86 |
+
with gr.Column():
|
87 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
88 |
+
embed_btn = gr.Button("Generate Embedding")
|
89 |
+
|
90 |
+
with gr.Column():
|
91 |
+
embedding_json = gr.JSON(label="Embedding Output")
|
92 |
+
embedding_dim = gr.Textbox(label="Embedding Dimension")
|
93 |
+
|
94 |
+
def update_embedding(img):
|
95 |
+
result = generate_embedding(img)
|
96 |
+
if result is None:
|
97 |
+
return {
|
98 |
+
embedding_json: None,
|
99 |
+
embedding_dim: "No embedding generated"
|
100 |
+
}
|
101 |
+
return {
|
102 |
+
embedding_json: result,
|
103 |
+
embedding_dim: f"Dimension: {len(result['embedding'])}"
|
104 |
+
}
|
105 |
+
|
106 |
+
embed_btn.click(
|
107 |
+
fn=update_embedding,
|
108 |
+
inputs=[input_image],
|
109 |
+
outputs=[embedding_json, embedding_dim]
|
110 |
+
)
|
111 |
+
|
112 |
+
# MCP Server Implementation
|
113 |
+
class NomicEmbeddingServer:
|
114 |
+
def __init__(self):
|
115 |
+
self.server = Server(
|
116 |
+
{
|
117 |
+
"name": "nomic-embedding-server",
|
118 |
+
"version": "0.1.0",
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"capabilities": {
|
122 |
+
"tools": {},
|
123 |
+
},
|
124 |
+
}
|
125 |
+
)
|
126 |
+
|
127 |
+
self.setup_tool_handlers()
|
128 |
+
|
129 |
+
# Error handling
|
130 |
+
self.server.onerror = lambda error: print(f"[MCP Error] {error}")
|
131 |
+
|
132 |
+
def setup_tool_handlers(self):
|
133 |
+
self.server.set_request_handler(ListToolsRequestSchema, self.handle_list_tools)
|
134 |
+
self.server.set_request_handler(CallToolRequestSchema, self.handle_call_tool)
|
135 |
+
|
136 |
+
async def handle_list_tools(self, request):
|
137 |
+
return {
|
138 |
+
"tools": [
|
139 |
+
{
|
140 |
+
"name": "embed_image",
|
141 |
+
"description": "Generate embeddings for an image using nomic-ai/nomic-embed-vision-v1.5",
|
142 |
+
"inputSchema": {
|
143 |
+
"type": "object",
|
144 |
+
"properties": {
|
145 |
+
"image_url": {
|
146 |
+
"type": "string",
|
147 |
+
"description": "URL of the image to embed",
|
148 |
+
},
|
149 |
+
"image_data": {
|
150 |
+
"type": "string",
|
151 |
+
"description": "Base64-encoded image data (alternative to image_url)",
|
152 |
+
},
|
153 |
+
},
|
154 |
+
"anyOf": [
|
155 |
+
{"required": ["image_url"]},
|
156 |
+
{"required": ["image_data"]},
|
157 |
+
],
|
158 |
+
},
|
159 |
+
}
|
160 |
+
]
|
161 |
+
}
|
162 |
+
|
163 |
+
async def handle_call_tool(self, request):
|
164 |
+
if request.params.name != "embed_image":
|
165 |
+
raise McpError(
|
166 |
+
ErrorCode.MethodNotFound,
|
167 |
+
f"Unknown tool: {request.params.name}"
|
168 |
+
)
|
169 |
+
|
170 |
+
args = request.params.arguments
|
171 |
+
|
172 |
+
try:
|
173 |
+
# Handle image from URL
|
174 |
+
if "image_url" in args:
|
175 |
+
response = requests.get(args["image_url"])
|
176 |
+
image = Image.open(BytesIO(response.content))
|
177 |
+
|
178 |
+
# Handle image from base64 data
|
179 |
+
elif "image_data" in args:
|
180 |
+
image_data = base64.b64decode(args["image_data"])
|
181 |
+
image = Image.open(BytesIO(image_data))
|
182 |
+
|
183 |
+
else:
|
184 |
+
raise McpError(
|
185 |
+
ErrorCode.InvalidParams,
|
186 |
+
"Either image_url or image_data must be provided"
|
187 |
+
)
|
188 |
+
|
189 |
+
# Generate embedding
|
190 |
+
result = generate_embedding(image)
|
191 |
+
|
192 |
+
return {
|
193 |
+
"content": [
|
194 |
+
{
|
195 |
+
"type": "text",
|
196 |
+
"text": json.dumps(result, indent=2),
|
197 |
+
}
|
198 |
+
]
|
199 |
+
}
|
200 |
+
|
201 |
+
except Exception as e:
|
202 |
+
return {
|
203 |
+
"content": [
|
204 |
+
{
|
205 |
+
"type": "text",
|
206 |
+
"text": f"Error generating embedding: {str(e)}",
|
207 |
+
}
|
208 |
+
],
|
209 |
+
"isError": True,
|
210 |
+
}
|
211 |
+
|
212 |
+
# Initialize and run the MCP server
|
213 |
+
embedding_server = NomicEmbeddingServer()
|
214 |
+
|
215 |
+
# Connect the MCP server to the Gradio app
|
216 |
+
transport = GradioServerTransport(demo)
|
217 |
+
embedding_server.server.connect(transport)
|
218 |
+
|
219 |
+
# Launch the Gradio app
|
220 |
+
if __name__ == "__main__":
|
221 |
+
# For Huggingface Spaces, we need to specify the server name and port
|
222 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
example_client.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import base64
|
3 |
+
from io import BytesIO
|
4 |
+
from PIL import Image
|
5 |
+
import json
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# This is an example client that demonstrates how to use the MCP server
|
10 |
+
# You would replace this URL with the actual URL of your deployed Huggingface Space
|
11 |
+
MCP_SERVER_URL = "https://your-username-nomic-vision-mcp.hf.space/mcp"
|
12 |
+
|
13 |
+
def embed_image_from_url(image_url):
|
14 |
+
"""
|
15 |
+
Generate embeddings for an image using the MCP server's embed_image tool
|
16 |
+
|
17 |
+
Args:
|
18 |
+
image_url: URL of the image to embed
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
The embedding vector and its dimension
|
22 |
+
"""
|
23 |
+
# Prepare the MCP request
|
24 |
+
mcp_request = {
|
25 |
+
"jsonrpc": "2.0",
|
26 |
+
"method": "callTool",
|
27 |
+
"params": {
|
28 |
+
"name": "embed_image",
|
29 |
+
"arguments": {
|
30 |
+
"image_url": image_url
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"id": 1
|
34 |
+
}
|
35 |
+
|
36 |
+
# Send the request to the MCP server
|
37 |
+
response = requests.post(MCP_SERVER_URL, json=mcp_request)
|
38 |
+
|
39 |
+
# Parse the response
|
40 |
+
result = response.json()
|
41 |
+
|
42 |
+
if "error" in result:
|
43 |
+
print(f"Error: {result['error']['message']}")
|
44 |
+
return None
|
45 |
+
|
46 |
+
# Extract the embedding from the response
|
47 |
+
content = result["result"]["content"][0]["text"]
|
48 |
+
embedding_data = json.loads(content)
|
49 |
+
|
50 |
+
return embedding_data
|
51 |
+
|
52 |
+
def embed_image_from_file(image_path):
|
53 |
+
"""
|
54 |
+
Generate embeddings for an image using the MCP server's embed_image tool
|
55 |
+
|
56 |
+
Args:
|
57 |
+
image_path: Path to the image file
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
The embedding vector and its dimension
|
61 |
+
"""
|
62 |
+
# Load the image
|
63 |
+
with open(image_path, "rb") as f:
|
64 |
+
image_data = f.read()
|
65 |
+
|
66 |
+
# Encode the image as base64
|
67 |
+
image_base64 = base64.b64encode(image_data).decode("utf-8")
|
68 |
+
|
69 |
+
# Prepare the MCP request
|
70 |
+
mcp_request = {
|
71 |
+
"jsonrpc": "2.0",
|
72 |
+
"method": "callTool",
|
73 |
+
"params": {
|
74 |
+
"name": "embed_image",
|
75 |
+
"arguments": {
|
76 |
+
"image_data": image_base64
|
77 |
+
}
|
78 |
+
},
|
79 |
+
"id": 1
|
80 |
+
}
|
81 |
+
|
82 |
+
# Send the request to the MCP server
|
83 |
+
response = requests.post(MCP_SERVER_URL, json=mcp_request)
|
84 |
+
|
85 |
+
# Parse the response
|
86 |
+
result = response.json()
|
87 |
+
|
88 |
+
if "error" in result:
|
89 |
+
print(f"Error: {result['error']['message']}")
|
90 |
+
return None
|
91 |
+
|
92 |
+
# Extract the embedding from the response
|
93 |
+
content = result["result"]["content"][0]["text"]
|
94 |
+
embedding_data = json.loads(content)
|
95 |
+
|
96 |
+
return embedding_data
|
97 |
+
|
98 |
+
def visualize_embedding(embedding):
|
99 |
+
"""
|
100 |
+
Visualize the embedding vector
|
101 |
+
|
102 |
+
Args:
|
103 |
+
embedding: The embedding vector
|
104 |
+
"""
|
105 |
+
# Convert the embedding to a numpy array
|
106 |
+
embedding_array = np.array(embedding)
|
107 |
+
|
108 |
+
# Plot the embedding
|
109 |
+
plt.figure(figsize=(10, 5))
|
110 |
+
plt.plot(embedding_array)
|
111 |
+
plt.title("Embedding Vector")
|
112 |
+
plt.xlabel("Dimension")
|
113 |
+
plt.ylabel("Value")
|
114 |
+
plt.grid(True)
|
115 |
+
plt.show()
|
116 |
+
|
117 |
+
# Plot the histogram of the embedding
|
118 |
+
plt.figure(figsize=(10, 5))
|
119 |
+
plt.hist(embedding_array, bins=50)
|
120 |
+
plt.title("Embedding Histogram")
|
121 |
+
plt.xlabel("Value")
|
122 |
+
plt.ylabel("Frequency")
|
123 |
+
plt.grid(True)
|
124 |
+
plt.show()
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
# Example usage with an image URL
|
128 |
+
image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/bert-architects.png"
|
129 |
+
print(f"Generating embedding for image: {image_url}")
|
130 |
+
|
131 |
+
embedding_data = embed_image_from_url(image_url)
|
132 |
+
|
133 |
+
if embedding_data:
|
134 |
+
print(f"Embedding dimension: {embedding_data['dimension']}")
|
135 |
+
print(f"First 10 values of embedding: {embedding_data['embedding'][:10]}...")
|
136 |
+
|
137 |
+
# Visualize the embedding
|
138 |
+
visualize_embedding(embedding_data['embedding'])
|
139 |
+
|
140 |
+
# Example usage with a local image file
|
141 |
+
# Uncomment the following lines to use a local image file
|
142 |
+
# image_path = "path/to/your/image.jpg"
|
143 |
+
# print(f"Generating embedding for image: {image_path}")
|
144 |
+
# embedding_data = embed_image_from_file(image_path)
|
145 |
+
#
|
146 |
+
# if embedding_data:
|
147 |
+
# print(f"Embedding dimension: {embedding_data['dimension']}")
|
148 |
+
# print(f"First 10 values of embedding: {embedding_data['embedding'][:10]}...")
|
149 |
+
#
|
150 |
+
# # Visualize the embedding
|
151 |
+
# visualize_embedding(embedding_data['embedding'])
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
pillow
|
4 |
+
numpy
|
5 |
+
requests
|
6 |
+
modelcontextprotocol
|
7 |
+
gradio[mcp]
|
8 |
+
mcp
|
9 |
+
https://gradio-pypi-previews.s3.amazonaws.com/3b5cace94781b90993b596a83fb39fd1584d68ee/gradio-5.26.0-py3-none-any.whl
|
requirements_hf.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
transformers>=4.30.0
|
3 |
+
torch>=2.0.0
|
4 |
+
pillow>=9.0.0
|
5 |
+
numpy>=1.20.0
|
6 |
+
requests>=2.25.0
|
7 |
+
modelcontextprotocol>=0.1.0
|
test_local.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import base64
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
import json
|
6 |
+
import sys
|
7 |
+
|
8 |
+
def test_local_server(image_path=None):
|
9 |
+
"""
|
10 |
+
Test the local MCP server by sending a request to embed an image
|
11 |
+
|
12 |
+
Args:
|
13 |
+
image_path: Path to the image file. If None, a test URL will be used.
|
14 |
+
"""
|
15 |
+
# Local server URL (default Gradio port)
|
16 |
+
server_url = "http://localhost:7860/mcp"
|
17 |
+
|
18 |
+
if image_path:
|
19 |
+
# Load the image
|
20 |
+
try:
|
21 |
+
with open(image_path, "rb") as f:
|
22 |
+
image_data = f.read()
|
23 |
+
|
24 |
+
# Encode the image as base64
|
25 |
+
image_base64 = base64.b64encode(image_data).decode("utf-8")
|
26 |
+
|
27 |
+
# Prepare the MCP request with image data
|
28 |
+
mcp_request = {
|
29 |
+
"jsonrpc": "2.0",
|
30 |
+
"method": "callTool",
|
31 |
+
"params": {
|
32 |
+
"name": "embed_image",
|
33 |
+
"arguments": {
|
34 |
+
"image_data": image_base64
|
35 |
+
}
|
36 |
+
},
|
37 |
+
"id": 1
|
38 |
+
}
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error loading image: {str(e)}")
|
41 |
+
return
|
42 |
+
else:
|
43 |
+
# Use a test image URL
|
44 |
+
test_image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/bert-architects.png"
|
45 |
+
print(f"Using test image URL: {test_image_url}")
|
46 |
+
|
47 |
+
# Prepare the MCP request with image URL
|
48 |
+
mcp_request = {
|
49 |
+
"jsonrpc": "2.0",
|
50 |
+
"method": "callTool",
|
51 |
+
"params": {
|
52 |
+
"name": "embed_image",
|
53 |
+
"arguments": {
|
54 |
+
"image_url": test_image_url
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"id": 1
|
58 |
+
}
|
59 |
+
|
60 |
+
print("Sending request to local MCP server...")
|
61 |
+
|
62 |
+
try:
|
63 |
+
# Send the request to the MCP server
|
64 |
+
response = requests.post(server_url, json=mcp_request)
|
65 |
+
|
66 |
+
# Check if the request was successful
|
67 |
+
if response.status_code == 200:
|
68 |
+
# Parse the response
|
69 |
+
result = response.json()
|
70 |
+
|
71 |
+
if "error" in result:
|
72 |
+
print(f"Error from server: {result['error']['message']}")
|
73 |
+
else:
|
74 |
+
# Extract the embedding from the response
|
75 |
+
content = result["result"]["content"][0]["text"]
|
76 |
+
embedding_data = json.loads(content)
|
77 |
+
|
78 |
+
print("✅ Test successful!")
|
79 |
+
print(f"Embedding dimension: {embedding_data['dimension']}")
|
80 |
+
print(f"First 10 values of embedding: {embedding_data['embedding'][:10]}...")
|
81 |
+
else:
|
82 |
+
print(f"❌ Error: HTTP {response.status_code}")
|
83 |
+
print(response.text)
|
84 |
+
|
85 |
+
except Exception as e:
|
86 |
+
print(f"❌ Error connecting to server: {str(e)}")
|
87 |
+
print("Make sure the server is running with 'python app.py'")
|
88 |
+
|
89 |
+
if __name__ == "__main__":
|
90 |
+
# Check if an image path was provided
|
91 |
+
if len(sys.argv) > 1:
|
92 |
+
image_path = sys.argv[1]
|
93 |
+
print(f"Testing with image: {image_path}")
|
94 |
+
test_local_server(image_path)
|
95 |
+
else:
|
96 |
+
print("No image path provided, using test URL")
|
97 |
+
test_local_server()
|