import gradio as gr from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import torch device = "cuda" if torch.cuda.is_available() else "cpu" # Charger le modĂšle avec scheduler model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to(device) pipe.enable_attention_slicing() def generate_image(prompt): if prompt.strip() == "": return None image = pipe(prompt, num_inference_steps=20, height=512, width=512).images[0] return image description = """ # 🌄 GĂ©nĂ©rateur de Paysages IA Tape un mot-clĂ© ou une idĂ©e de paysage et clique sur **GĂ©nĂ©rer** ! """ demo = gr.Interface( fn=generate_image, inputs=gr.Textbox(label="Description du paysage", placeholder="ex : forĂȘt mystique au coucher du soleil"), outputs=gr.Image(label="Image gĂ©nĂ©rĂ©e"), title="Paysage IA", description=description, ) demo.launch()