Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -48,8 +48,14 @@ with open('loras.json', 'r') as f:
|
|
| 48 |
#pipe = diffusers.ZImagePipeline.from_pretrained("Disty0/Z-Image-Turbo-SDNQ-uint4-svd-r32", torch_dtype=torch.bfloat16)
|
| 49 |
#torch.cuda.empty_cache()
|
| 50 |
#pipe = diffusers.ZImagePipeline.from_pretrained("dimitribarbot/Z-Image-Turbo-BF16", torch_dtype=torch.bfloat16)
|
| 51 |
-
pipe = diffusers.ZImagePipeline.from_pretrained("AlekseyCalvin/Z_Image_Deturbo_Diffusers", torch_dtype=torch.bfloat16)
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
#pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.float16).to("cuda")
|
| 55 |
#pipe.vae = AutoencoderKL.from_pretrained("AlekseyCalvin/Custom_VAE-Z-image-FLUX.1-by-G-REPA", torch_dtype=torch.bfloat16, device_map="cuda")
|
|
@@ -223,7 +229,7 @@ with gr.Blocks(css=css) as app:
|
|
| 223 |
with gr.Column():
|
| 224 |
with gr.Row():
|
| 225 |
cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=.1, value=1.0)
|
| 226 |
-
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=
|
| 227 |
|
| 228 |
with gr.Row():
|
| 229 |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
|
|
|
| 48 |
#pipe = diffusers.ZImagePipeline.from_pretrained("Disty0/Z-Image-Turbo-SDNQ-uint4-svd-r32", torch_dtype=torch.bfloat16)
|
| 49 |
#torch.cuda.empty_cache()
|
| 50 |
#pipe = diffusers.ZImagePipeline.from_pretrained("dimitribarbot/Z-Image-Turbo-BF16", torch_dtype=torch.bfloat16)
|
| 51 |
+
#pipe = diffusers.ZImagePipeline.from_pretrained("AlekseyCalvin/Z_Image_Deturbo_Diffusers", torch_dtype=torch.bfloat16)
|
| 52 |
+
qwen_path = 'nightknocker/recurrent-qwen3-z-image-turbo'
|
| 53 |
+
text_encoder = RecurrentDecoderModel.from_pretrained(qwen_path).to(torch.bfloat16)
|
| 54 |
+
pipeline = ZImagePipeline.from_pretrained(
|
| 55 |
+
'AlekseyCalvin/Z-Image-Deturbo-Returbo-Base_Diffusers',
|
| 56 |
+
text_encoder=text_encoder,
|
| 57 |
+
torch_dtype=torch.bfloat16
|
| 58 |
+
)
|
| 59 |
|
| 60 |
#pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.float16).to("cuda")
|
| 61 |
#pipe.vae = AutoencoderKL.from_pretrained("AlekseyCalvin/Custom_VAE-Z-image-FLUX.1-by-G-REPA", torch_dtype=torch.bfloat16, device_map="cuda")
|
|
|
|
| 229 |
with gr.Column():
|
| 230 |
with gr.Row():
|
| 231 |
cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=.1, value=1.0)
|
| 232 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=10)
|
| 233 |
|
| 234 |
with gr.Row():
|
| 235 |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|