Spaces:
Running
on
Zero
Running
on
Zero
Fix ZeroGPU startup error: Move GPU decorator to request handler
Browse files- README.md +14 -5
- __pycache__/app.cpython-313.pyc +0 -0
- app.py +200 -39
README.md
CHANGED
|
@@ -20,7 +20,7 @@ endpoint via the `HF_ROUTER_API` environment variable.
|
|
| 20 |
|
| 21 |
| File | Purpose |
|
| 22 |
| ---- | ------- |
|
| 23 |
-
| `app.py` | Loads the merged checkpoint on demand (tries `MODEL_REPO` first, then `
|
| 24 |
| `requirements.txt` | Minimal dependency set (transformers, bitsandbytes, torch, fastapi, accelerate, sentencepiece, spaces, uvicorn). |
|
| 25 |
| `.huggingface/spaces.yml` | Configures the Space for ZeroGPU hardware and disables automatic sleep. |
|
| 26 |
|
|
@@ -38,9 +38,14 @@ endpoint via the `HF_ROUTER_API` environment variable.
|
|
| 38 |
huggingface-cli upload . Alovestocode/router-router-zero --repo-type space
|
| 39 |
```
|
| 40 |
|
| 41 |
-
3. **Configure secrets**
|
| 42 |
-
- `
|
| 43 |
-
- `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
4. **Connect the main router UI**
|
| 46 |
```bash
|
|
@@ -66,4 +71,8 @@ Response:
|
|
| 66 |
```
|
| 67 |
|
| 68 |
Use `HF_ROUTER_API` in the main application or the smoke-test script to validate
|
| 69 |
-
that the deployed model returns the expected JSON plan.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
| File | Purpose |
|
| 22 |
| ---- | ------- |
|
| 23 |
+
| `app.py` | Loads the merged checkpoint on demand (tries `MODEL_REPO` first, then `MODEL_FALLBACKS` or the default Gemma → Llama → Qwen order), exposes a `/v1/generate` API, and serves a small HTML console at `/gradio`. |
|
| 24 |
| `requirements.txt` | Minimal dependency set (transformers, bitsandbytes, torch, fastapi, accelerate, sentencepiece, spaces, uvicorn). |
|
| 25 |
| `.huggingface/spaces.yml` | Configures the Space for ZeroGPU hardware and disables automatic sleep. |
|
| 26 |
|
|
|
|
| 38 |
huggingface-cli upload . Alovestocode/router-router-zero --repo-type space
|
| 39 |
```
|
| 40 |
|
| 41 |
+
3. **Configure secrets & variables**
|
| 42 |
+
- `HF_TOKEN` – token with read access to the merged checkpoint(s)
|
| 43 |
+
- `MODEL_REPO` – optional hard pin if you only want a single model considered
|
| 44 |
+
- `MODEL_FALLBACKS` – comma-separated preference order (defaults to `router-gemma3-merged,router-llama31-merged,router-qwen3-32b-merged`)
|
| 45 |
+
- `MODEL_LOAD_STRATEGY` – `8bit` (default), `4bit`, or `fp16`; backwards-compatible with `LOAD_IN_8BIT` / `LOAD_IN_4BIT`
|
| 46 |
+
- `MODEL_LOAD_STRATEGIES` – optional ordered fallback list (e.g. `8bit,4bit,cpu`). The loader will automatically walk this list and finally fall back to `8bit→4bit→bf16→fp16→cpu`.
|
| 47 |
+
- `SKIP_WARM_START` – set to `1` if you prefer to load lazily on the first request
|
| 48 |
+
- `ALLOW_WARM_START_FAILURE` – set to `1` to keep the container alive even if warm-up fails (the next request will retry)
|
| 49 |
|
| 50 |
4. **Connect the main router UI**
|
| 51 |
```bash
|
|
|
|
| 71 |
```
|
| 72 |
|
| 73 |
Use `HF_ROUTER_API` in the main application or the smoke-test script to validate
|
| 74 |
+
that the deployed model returns the expected JSON plan. When running on ZeroGPU
|
| 75 |
+
we recommend keeping `MODEL_LOAD_STRATEGY=8bit` (or `LOAD_IN_8BIT=1`) so the
|
| 76 |
+
weights fit comfortably in the 70GB slice; if that fails the app automatically
|
| 77 |
+
degrades through 4-bit, bf16/fp16, and finally CPU mode. You can inspect the
|
| 78 |
+
active load mode via the `/` healthcheck (`strategy` field).
|
__pycache__/app.cpython-313.pyc
CHANGED
|
Binary files a/__pycache__/app.cpython-313.pyc and b/__pycache__/app.cpython-313.pyc differ
|
|
|
app.py
CHANGED
|
@@ -2,7 +2,7 @@ from __future__ import annotations
|
|
| 2 |
|
| 3 |
import os
|
| 4 |
from functools import lru_cache
|
| 5 |
-
from typing import Optional
|
| 6 |
|
| 7 |
import torch
|
| 8 |
from fastapi import FastAPI, HTTPException
|
|
@@ -31,27 +31,120 @@ from transformers import (
|
|
| 31 |
MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", "600"))
|
| 32 |
DEFAULT_TEMPERATURE = float(os.environ.get("DEFAULT_TEMPERATURE", "0.2"))
|
| 33 |
DEFAULT_TOP_P = float(os.environ.get("DEFAULT_TOP_P", "0.9"))
|
| 34 |
-
|
| 35 |
-
USE_8BIT = os.environ.get("LOAD_IN_8BIT", "0").lower() in {"1", "true", "yes"}
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
"Alovestocode/router-gemma3-merged",
|
|
|
|
|
|
|
| 40 |
]
|
| 41 |
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
def _initialise_tokenizer() -> tuple[str, AutoTokenizer]:
|
| 44 |
errors: dict[str, str] = {}
|
| 45 |
-
|
| 46 |
-
explicit = os.environ.get("MODEL_REPO")
|
| 47 |
-
if explicit:
|
| 48 |
-
candidates.append(explicit)
|
| 49 |
-
for name in MODEL_FALLBACKS:
|
| 50 |
-
if name not in candidates:
|
| 51 |
-
candidates.append(name)
|
| 52 |
-
for candidate in candidates:
|
| 53 |
try:
|
| 54 |
-
tok = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
print(f"Loaded tokenizer from {candidate}")
|
| 56 |
return candidate, tok
|
| 57 |
except Exception as exc: # pragma: no cover - download errors
|
|
@@ -78,27 +171,81 @@ class GenerateResponse(BaseModel):
|
|
| 78 |
|
| 79 |
|
| 80 |
_MODEL = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
|
| 83 |
-
@spaces.GPU(duration=120)
|
| 84 |
def get_model() -> AutoModelForCausalLM:
|
| 85 |
-
|
|
|
|
| 86 |
if _MODEL is None:
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
return _MODEL
|
| 103 |
|
| 104 |
|
|
@@ -141,23 +288,37 @@ fastapi_app = FastAPI(title="Router Model API", version="1.0.0")
|
|
| 141 |
|
| 142 |
@fastapi_app.get("/")
|
| 143 |
def healthcheck() -> dict[str, str]:
|
| 144 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
|
| 147 |
@fastapi_app.on_event("startup")
|
| 148 |
def warm_start() -> None:
|
| 149 |
-
"""
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
|
| 157 |
@fastapi_app.post("/v1/generate", response_model=GenerateResponse)
|
| 158 |
def generate_endpoint(payload: GeneratePayload) -> GenerateResponse:
|
| 159 |
try:
|
| 160 |
-
text =
|
| 161 |
prompt=payload.prompt,
|
| 162 |
max_new_tokens=payload.max_new_tokens or MAX_NEW_TOKENS,
|
| 163 |
temperature=payload.temperature or DEFAULT_TEMPERATURE,
|
|
|
|
| 2 |
|
| 3 |
import os
|
| 4 |
from functools import lru_cache
|
| 5 |
+
from typing import List, Optional, Tuple
|
| 6 |
|
| 7 |
import torch
|
| 8 |
from fastapi import FastAPI, HTTPException
|
|
|
|
| 31 |
MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", "600"))
|
| 32 |
DEFAULT_TEMPERATURE = float(os.environ.get("DEFAULT_TEMPERATURE", "0.2"))
|
| 33 |
DEFAULT_TOP_P = float(os.environ.get("DEFAULT_TOP_P", "0.9"))
|
| 34 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
| 35 |
|
| 36 |
+
def _normalise_bool(value: Optional[str], *, default: bool = False) -> bool:
|
| 37 |
+
if value is None:
|
| 38 |
+
return default
|
| 39 |
+
return value.lower() in {"1", "true", "yes", "on"}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
_strategy = os.environ.get("MODEL_LOAD_STRATEGY") or os.environ.get("LOAD_STRATEGY")
|
| 43 |
+
if _strategy:
|
| 44 |
+
_strategy = _strategy.lower().strip()
|
| 45 |
+
|
| 46 |
+
# Backwards compatibility flags remain available for older deployments.
|
| 47 |
+
USE_8BIT = _normalise_bool(os.environ.get("LOAD_IN_8BIT"), default=True)
|
| 48 |
+
USE_4BIT = _normalise_bool(os.environ.get("LOAD_IN_4BIT"), default=False)
|
| 49 |
+
|
| 50 |
+
SKIP_WARM_START = _normalise_bool(os.environ.get("SKIP_WARM_START"), default=False)
|
| 51 |
+
ALLOW_WARM_START_FAILURE = _normalise_bool(
|
| 52 |
+
os.environ.get("ALLOW_WARM_START_FAILURE"),
|
| 53 |
+
default=False,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def _normalise_strategy(name: Optional[str]) -> Optional[str]:
|
| 58 |
+
if not name:
|
| 59 |
+
return None
|
| 60 |
+
alias = name.lower().strip()
|
| 61 |
+
mapping = {
|
| 62 |
+
"8": "8bit",
|
| 63 |
+
"8bit": "8bit",
|
| 64 |
+
"int8": "8bit",
|
| 65 |
+
"bnb8": "8bit",
|
| 66 |
+
"llm.int8": "8bit",
|
| 67 |
+
"4": "4bit",
|
| 68 |
+
"4bit": "4bit",
|
| 69 |
+
"int4": "4bit",
|
| 70 |
+
"bnb4": "4bit",
|
| 71 |
+
"nf4": "4bit",
|
| 72 |
+
"bf16": "bf16",
|
| 73 |
+
"bfloat16": "bf16",
|
| 74 |
+
"fp16": "fp16",
|
| 75 |
+
"float16": "fp16",
|
| 76 |
+
"half": "fp16",
|
| 77 |
+
"cpu": "cpu",
|
| 78 |
+
"fp32": "cpu",
|
| 79 |
+
"full": "cpu",
|
| 80 |
+
}
|
| 81 |
+
canonical = mapping.get(alias, alias)
|
| 82 |
+
if canonical not in {"8bit", "4bit", "bf16", "fp16", "cpu"}:
|
| 83 |
+
return None
|
| 84 |
+
return canonical
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def _strategy_sequence() -> List[str]:
|
| 88 |
+
order: List[str] = []
|
| 89 |
+
seen: set[str] = set()
|
| 90 |
+
|
| 91 |
+
def push(entry: Optional[str]) -> None:
|
| 92 |
+
canonical = _normalise_strategy(entry)
|
| 93 |
+
if not canonical or canonical in seen:
|
| 94 |
+
return
|
| 95 |
+
seen.add(canonical)
|
| 96 |
+
order.append(canonical)
|
| 97 |
+
|
| 98 |
+
push(_strategy)
|
| 99 |
+
for raw in os.environ.get("MODEL_LOAD_STRATEGIES", "").split(","):
|
| 100 |
+
push(raw)
|
| 101 |
+
|
| 102 |
+
# Compatibility: honour legacy boolean switches.
|
| 103 |
+
if USE_8BIT:
|
| 104 |
+
push("8bit")
|
| 105 |
+
if USE_4BIT:
|
| 106 |
+
push("4bit")
|
| 107 |
+
if not (USE_8BIT or USE_4BIT):
|
| 108 |
+
push("bf16" if torch.cuda.is_available() else "cpu")
|
| 109 |
+
|
| 110 |
+
for fallback in ("8bit", "4bit", "bf16", "fp16", "cpu"):
|
| 111 |
+
push(fallback)
|
| 112 |
+
return order
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
DEFAULT_MODEL_FALLBACKS: List[str] = [
|
| 116 |
"Alovestocode/router-gemma3-merged",
|
| 117 |
+
"Alovestocode/router-llama31-merged",
|
| 118 |
+
"Alovestocode/router-qwen3-32b-merged",
|
| 119 |
]
|
| 120 |
|
| 121 |
|
| 122 |
+
def _candidate_models() -> List[str]:
|
| 123 |
+
explicit = os.environ.get("MODEL_REPO")
|
| 124 |
+
overrides = [
|
| 125 |
+
item.strip()
|
| 126 |
+
for item in os.environ.get("MODEL_FALLBACKS", "").split(",")
|
| 127 |
+
if item.strip()
|
| 128 |
+
]
|
| 129 |
+
candidates: List[str] = []
|
| 130 |
+
seen = set()
|
| 131 |
+
for name in [explicit, *overrides, *DEFAULT_MODEL_FALLBACKS]:
|
| 132 |
+
if not name or name in seen:
|
| 133 |
+
continue
|
| 134 |
+
seen.add(name)
|
| 135 |
+
candidates.append(name)
|
| 136 |
+
return candidates
|
| 137 |
+
|
| 138 |
+
|
| 139 |
def _initialise_tokenizer() -> tuple[str, AutoTokenizer]:
|
| 140 |
errors: dict[str, str] = {}
|
| 141 |
+
for candidate in _candidate_models():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
try:
|
| 143 |
+
tok = AutoTokenizer.from_pretrained(
|
| 144 |
+
candidate,
|
| 145 |
+
use_fast=False,
|
| 146 |
+
token=HF_TOKEN,
|
| 147 |
+
)
|
| 148 |
print(f"Loaded tokenizer from {candidate}")
|
| 149 |
return candidate, tok
|
| 150 |
except Exception as exc: # pragma: no cover - download errors
|
|
|
|
| 171 |
|
| 172 |
|
| 173 |
_MODEL = None
|
| 174 |
+
ACTIVE_STRATEGY: Optional[str] = None
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def _build_load_kwargs(strategy: str, gpu_compute_dtype: torch.dtype) -> Tuple[str, dict]:
|
| 178 |
+
"""Return kwargs for `from_pretrained` using the given strategy."""
|
| 179 |
+
cuda_available = torch.cuda.is_available()
|
| 180 |
+
strategy = strategy.lower()
|
| 181 |
+
kwargs: dict = {
|
| 182 |
+
"trust_remote_code": True,
|
| 183 |
+
"low_cpu_mem_usage": True,
|
| 184 |
+
"token": HF_TOKEN,
|
| 185 |
+
}
|
| 186 |
+
if strategy == "8bit":
|
| 187 |
+
if not cuda_available:
|
| 188 |
+
raise RuntimeError("8bit loading requires CUDA availability")
|
| 189 |
+
kwargs["device_map"] = "auto"
|
| 190 |
+
kwargs["quantization_config"] = BitsAndBytesConfig(
|
| 191 |
+
load_in_8bit=True,
|
| 192 |
+
llm_int8_threshold=6.0,
|
| 193 |
+
)
|
| 194 |
+
return "8bit", kwargs
|
| 195 |
+
if strategy == "4bit":
|
| 196 |
+
if not cuda_available:
|
| 197 |
+
raise RuntimeError("4bit loading requires CUDA availability")
|
| 198 |
+
kwargs["device_map"] = "auto"
|
| 199 |
+
kwargs["quantization_config"] = BitsAndBytesConfig(
|
| 200 |
+
load_in_4bit=True,
|
| 201 |
+
bnb_4bit_compute_dtype=gpu_compute_dtype,
|
| 202 |
+
bnb_4bit_use_double_quant=True,
|
| 203 |
+
bnb_4bit_quant_type="nf4",
|
| 204 |
+
)
|
| 205 |
+
return "4bit", kwargs
|
| 206 |
+
if strategy == "bf16":
|
| 207 |
+
kwargs["device_map"] = "auto" if cuda_available else "cpu"
|
| 208 |
+
kwargs["torch_dtype"] = torch.bfloat16 if cuda_available else torch.float32
|
| 209 |
+
return "bf16", kwargs
|
| 210 |
+
if strategy == "fp16":
|
| 211 |
+
kwargs["device_map"] = "auto" if cuda_available else "cpu"
|
| 212 |
+
kwargs["torch_dtype"] = torch.float16 if cuda_available else torch.float32
|
| 213 |
+
return "fp16", kwargs
|
| 214 |
+
if strategy == "cpu":
|
| 215 |
+
kwargs["device_map"] = "cpu"
|
| 216 |
+
kwargs["torch_dtype"] = torch.float32
|
| 217 |
+
return "cpu", kwargs
|
| 218 |
+
raise ValueError(f"Unknown load strategy: {strategy}")
|
| 219 |
|
| 220 |
|
|
|
|
| 221 |
def get_model() -> AutoModelForCausalLM:
|
| 222 |
+
"""Load the model. This function should be called within a @spaces.GPU decorated function."""
|
| 223 |
+
global _MODEL, ACTIVE_STRATEGY
|
| 224 |
if _MODEL is None:
|
| 225 |
+
compute_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 226 |
+
attempts: List[Tuple[str, Exception]] = []
|
| 227 |
+
strategies = _strategy_sequence()
|
| 228 |
+
print(f"Attempting to load {MODEL_ID} with strategies: {strategies}")
|
| 229 |
+
for candidate in strategies:
|
| 230 |
+
try:
|
| 231 |
+
label, kwargs = _build_load_kwargs(candidate, compute_dtype)
|
| 232 |
+
print(f"Trying strategy '{label}' for {MODEL_ID} ...")
|
| 233 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **kwargs)
|
| 234 |
+
_MODEL = model.eval()
|
| 235 |
+
ACTIVE_STRATEGY = label
|
| 236 |
+
print(f"Loaded {MODEL_ID} with strategy='{label}'")
|
| 237 |
+
break
|
| 238 |
+
except Exception as exc: # pragma: no cover - depends on runtime
|
| 239 |
+
attempts.append((candidate, exc))
|
| 240 |
+
print(f"Strategy '{candidate}' failed: {exc}")
|
| 241 |
+
if torch.cuda.is_available():
|
| 242 |
+
torch.cuda.empty_cache()
|
| 243 |
+
if _MODEL is None:
|
| 244 |
+
detail = "; ".join(f"{name}: {err}" for name, err in attempts) or "no details"
|
| 245 |
+
last_exc = attempts[-1][1] if attempts else None
|
| 246 |
+
raise RuntimeError(
|
| 247 |
+
f"Unable to load {MODEL_ID}. Tried strategies {strategies}. Details: {detail}"
|
| 248 |
+
) from last_exc
|
| 249 |
return _MODEL
|
| 250 |
|
| 251 |
|
|
|
|
| 288 |
|
| 289 |
@fastapi_app.get("/")
|
| 290 |
def healthcheck() -> dict[str, str]:
|
| 291 |
+
return {
|
| 292 |
+
"status": "ok",
|
| 293 |
+
"model": MODEL_ID,
|
| 294 |
+
"strategy": ACTIVE_STRATEGY or "pending",
|
| 295 |
+
}
|
| 296 |
|
| 297 |
|
| 298 |
@fastapi_app.on_event("startup")
|
| 299 |
def warm_start() -> None:
|
| 300 |
+
"""Warm start is disabled for ZeroGPU - model loads on first request."""
|
| 301 |
+
# ZeroGPU functions decorated with @spaces.GPU cannot be called during startup.
|
| 302 |
+
# They must be called within request handlers. Skip warm start for ZeroGPU.
|
| 303 |
+
print("Warm start skipped for ZeroGPU. Model will load on first request.")
|
| 304 |
+
return
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
@spaces.GPU(duration=300)
|
| 308 |
+
def _generate_with_gpu(
|
| 309 |
+
prompt: str,
|
| 310 |
+
max_new_tokens: int = MAX_NEW_TOKENS,
|
| 311 |
+
temperature: float = DEFAULT_TEMPERATURE,
|
| 312 |
+
top_p: float = DEFAULT_TOP_P,
|
| 313 |
+
) -> str:
|
| 314 |
+
"""Generate function wrapped with ZeroGPU decorator."""
|
| 315 |
+
return _generate(prompt, max_new_tokens, temperature, top_p)
|
| 316 |
|
| 317 |
|
| 318 |
@fastapi_app.post("/v1/generate", response_model=GenerateResponse)
|
| 319 |
def generate_endpoint(payload: GeneratePayload) -> GenerateResponse:
|
| 320 |
try:
|
| 321 |
+
text = _generate_with_gpu(
|
| 322 |
prompt=payload.prompt,
|
| 323 |
max_new_tokens=payload.max_new_tokens or MAX_NEW_TOKENS,
|
| 324 |
temperature=payload.temperature or DEFAULT_TEMPERATURE,
|