File size: 8,512 Bytes
bf7e729
 
 
f972c61
 
eb615ca
f972c61
eb615ca
bf7e729
 
 
f972c61
 
 
eb615ca
f972c61
 
eb615ca
ffd453e
 
 
 
 
 
 
 
 
 
f972c61
ffd453e
 
 
 
 
 
bf7e729
ffd453e
 
 
bf7e729
ffd453e
bf7e729
 
 
1999f4d
ffd453e
 
bf7e729
ffd453e
bf7e729
 
ffd453e
 
 
f972c61
bf7e729
f972c61
1999f4d
ffd453e
f972c61
ffd453e
 
 
f972c61
ffd453e
 
7fcaffe
f972c61
ffd453e
 
 
 
7fcaffe
ffd453e
 
 
 
 
 
 
 
bf7e729
f972c61
eb615ca
f972c61
eb615ca
ffd453e
 
 
 
 
f972c61
 
ffd453e
 
f972c61
ffd453e
bf7e729
 
 
 
f972c61
ffd453e
 
 
 
 
 
 
 
 
 
bf7e729
ffd453e
 
 
 
 
 
 
 
 
 
bf7e729
ffd453e
bf7e729
ffd453e
 
bf7e729
ffd453e
 
7fcaffe
ffd453e
 
 
 
eb615ca
 
ffd453e
 
 
 
bf7e729
ffd453e
 
 
 
 
bf7e729
ffd453e
 
 
 
 
 
 
 
 
 
 
 
bf7e729
ffd453e
 
 
 
 
 
 
 
bf7e729
ffd453e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7e729
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import pandas as pd
import os
from datetime import datetime
from .utils import (
    parse_round_time_to_seconds, parse_striking_stats, to_int_safe, 
    calculate_age, prepare_fighters_data
)
from .config import DEFAULT_ELO, N_FIGHTS_HISTORY



def _get_fighter_history_stats(
    fighter_name: str, 
    current_fight_date: datetime, 
    fighter_history: list[dict[str, any]], 
    fighters_df: pd.DataFrame, 
    n: int = N_FIGHTS_HISTORY
) -> dict[str, float]:
    """
    Calculates performance statistics for a fighter based on their last n fights.
    """
    past_fights = [f for f in fighter_history if f['date_obj'] < current_fight_date]
    last_n_fights = past_fights[-n:]

    if not last_n_fights:
        # Return a default dictionary with the correct keys for a fighter with no history
        return {
            'wins_last_n': 0,
            'avg_opp_elo_last_n': DEFAULT_ELO,
            'ko_percent_last_n': 0,
            'sig_str_landed_per_min_last_n': 0,
            'takedown_accuracy_last_n': 0,
            'sub_attempts_per_min_last_n': 0,
        }

    stats = {
        'wins': 0, 'ko_wins': 0, 'total_time_secs': 0,
        'sig_str_landed': 0, 'opponent_elos': [],
        'td_landed': 0, 'td_attempted': 0, 'sub_attempts': 0
    }

    for fight in last_n_fights:
        is_fighter_1 = (fight['fighter_1'] == fighter_name)
        opponent_name = fight['fighter_2'] if is_fighter_1 else fight['fighter_1']
        
        f_prefix = 'f1' if is_fighter_1 else 'f2'

        if fight['winner'] == fighter_name:
            stats['wins'] += 1
            if 'KO' in fight['method']:
                stats['ko_wins'] += 1

        if opponent_name in fighters_df.index:
            opp_elo = fighters_df.loc[opponent_name, 'elo']
            stats['opponent_elos'].append(opp_elo if pd.notna(opp_elo) else DEFAULT_ELO)
        
        stats['total_time_secs'] += parse_round_time_to_seconds(fight['round'], fight['time'])
        
        sig_str_stat = fight.get(f'{f_prefix}_sig_str', '0 of 0')
        landed, _ = parse_striking_stats(sig_str_stat)
        stats['sig_str_landed'] += landed

        td_stat = fight.get(f'{f_prefix}_td', '0 of 0')
        td_landed, td_attempted = parse_striking_stats(td_stat)
        stats['td_landed'] += td_landed
        stats['td_attempted'] += td_attempted
        
        stats['sub_attempts'] += to_int_safe(fight.get(f'{f_prefix}_sub_att'))

    # Final calculations
    avg_opp_elo = sum(stats['opponent_elos']) / len(stats['opponent_elos']) if stats['opponent_elos'] else 1500
    total_minutes = stats['total_time_secs'] / 60 if stats['total_time_secs'] > 0 else 0
    
    return {
        'wins_last_n': stats['wins'],
        'avg_opp_elo_last_n': avg_opp_elo,
        'ko_percent_last_n': (stats['ko_wins'] / stats['wins']) if stats['wins'] > 0 else 0,
        'sig_str_landed_per_min_last_n': (stats['sig_str_landed'] / total_minutes) if total_minutes > 0 else 0,
        'takedown_accuracy_last_n': (stats['td_landed'] / stats['td_attempted']) if stats['td_attempted'] > 0 else 0,
        'sub_attempts_per_min_last_n': (stats['sub_attempts'] / total_minutes) if total_minutes > 0 else 0,
    }

def preprocess_for_ml(
    fights_to_process: list[dict[str, any]], 
    fighters_csv_path: str
) -> tuple[pd.DataFrame, pd.Series, pd.DataFrame]:
    """
    Transforms raw fight and fighter data into a feature matrix (X) and target vector (y)
    suitable for a binary classification machine learning model.

    Args:
        fights_to_process: The list of fights to process.
        fighters_csv_path: Path to the CSV file with all fighter stats.

    Returns:
        Feature matrix X, target vector y, and metadata DataFrame.
    """
    if not os.path.exists(fighters_csv_path):
        raise FileNotFoundError(f"Fighters data not found at '{fighters_csv_path}'.")

    fighters_df = pd.read_csv(fighters_csv_path)
    fighters_prepared = prepare_fighters_data(fighters_df)

    # 2. Pre-calculate fighter histories to speed up lookups
    # And convert date strings to datetime objects once
    for fight in fights_to_process:
        try:
            # This will work if event_date is a string
            fight['date_obj'] = datetime.strptime(fight['event_date'], '%B %d, %Y')
        except TypeError:
            # This will be triggered if it's already a date-like object (e.g., Timestamp)
            fight['date_obj'] = fight['event_date']
    
    fighter_histories = {}
    for fighter_name in fighters_prepared.index:
        history = [f for f in fights_to_process if fighter_name in (f['fighter_1'], f['fighter_2'])]
        fighter_histories[fighter_name] = sorted(history, key=lambda x: x['date_obj'])

    # 3. Process fights to create features and targets
    feature_list = []
    target_list = []
    metadata_list = []

    for fight in fights_to_process:
        # Per the dataset's design, fighter_1 is always the winner.
        f1_name, f2_name = fight['fighter_1'], fight['fighter_2']

        if f1_name not in fighters_prepared.index or f2_name not in fighters_prepared.index:
            continue

        f1_stats, f2_stats = fighters_prepared.loc[f1_name], fighters_prepared.loc[f2_name]
        
        if isinstance(f1_stats, pd.DataFrame): f1_stats = f1_stats.iloc[0]
        if isinstance(f2_stats, pd.DataFrame): f2_stats = f2_stats.iloc[0]

        # Calculate ages for both fighters
        f1_age = calculate_age(f1_stats.get('dob'), fight['event_date'])
        f2_age = calculate_age(f2_stats.get('dob'), fight['event_date'])

        # Get historical stats for both fighters
        f1_hist_stats = _get_fighter_history_stats(f1_name, fight['date_obj'], fighter_histories.get(f1_name, []), fighters_prepared)
        f2_hist_stats = _get_fighter_history_stats(f2_name, fight['date_obj'], fighter_histories.get(f2_name, []), fighters_prepared)
        
        # --- Create two training examples from each fight for a balanced dataset ---

        # 1. The "Win" case: (fighter_1 - fighter_2)
        features_win = {
            # Original diffs
            'elo_diff': f1_stats.get('elo', 1500) - f2_stats.get('elo', 1500),
            'height_diff_cm': f1_stats.get('height_cm', 0) - f2_stats.get('height_cm', 0),
            'reach_diff_in': f1_stats.get('reach_in', 0) - f2_stats.get('reach_in', 0),
            'age_diff_years': (f1_age - f2_age) if f1_age and f2_age else 0,
            'stance_is_different': 1 if f1_stats.get('stance') != f2_stats.get('stance') else 0,
            # New historical diffs
            'wins_last_5_diff': f1_hist_stats['wins_last_n'] - f2_hist_stats['wins_last_n'],
            'avg_opp_elo_last_5_diff': f1_hist_stats['avg_opp_elo_last_n'] - f2_hist_stats['avg_opp_elo_last_n'],
            'ko_percent_last_5_diff': f1_hist_stats['ko_percent_last_n'] - f2_hist_stats['ko_percent_last_n'],
            'sig_str_landed_per_min_last_5_diff': f1_hist_stats['sig_str_landed_per_min_last_n'] - f2_hist_stats['sig_str_landed_per_min_last_n'],
            # Grappling features
            'takedown_accuracy_last_5_diff': f1_hist_stats['takedown_accuracy_last_n'] - f2_hist_stats['takedown_accuracy_last_n'],
            'sub_attempts_per_min_last_5_diff': f1_hist_stats['sub_attempts_per_min_last_n'] - f2_hist_stats['sub_attempts_per_min_last_n'],
        }
        feature_list.append(features_win)
        target_list.append(1)  # 1 represents a win

        # 2. The "Loss" case: (fighter_2 - fighter_1)
        # We invert the differences for the losing case.
        features_loss = {key: -value for key, value in features_win.items()}
        # Stance difference is symmetric; it doesn't get inverted.
        features_loss['stance_is_different'] = features_win['stance_is_different']
        
        feature_list.append(features_loss)
        target_list.append(0)  # 0 represents a loss

        # Add metadata for both generated samples
        # The 'winner' and 'loser' are consistent with the original data structure
        metadata_list.append({
            'winner': f1_name, 'loser': f2_name, 'event_date': fight['event_date']
        })
        metadata_list.append({
            'winner': f1_name, 'loser': f2_name, 'event_date': fight['event_date']
        })

    X = pd.DataFrame(feature_list).fillna(0)
    y = pd.Series(target_list, name='winner')
    metadata = pd.DataFrame(metadata_list)

    print(f"Preprocessing complete. Generated {X.shape[0]} samples with {X.shape[1]} features.")
    return X, y, metadata