Spaces:
Sleeping
Sleeping
File size: 8,512 Bytes
bf7e729 f972c61 eb615ca f972c61 eb615ca bf7e729 f972c61 eb615ca f972c61 eb615ca ffd453e f972c61 ffd453e bf7e729 ffd453e bf7e729 ffd453e bf7e729 1999f4d ffd453e bf7e729 ffd453e bf7e729 ffd453e f972c61 bf7e729 f972c61 1999f4d ffd453e f972c61 ffd453e f972c61 ffd453e 7fcaffe f972c61 ffd453e 7fcaffe ffd453e bf7e729 f972c61 eb615ca f972c61 eb615ca ffd453e f972c61 ffd453e f972c61 ffd453e bf7e729 f972c61 ffd453e bf7e729 ffd453e bf7e729 ffd453e bf7e729 ffd453e bf7e729 ffd453e 7fcaffe ffd453e eb615ca ffd453e bf7e729 ffd453e bf7e729 ffd453e bf7e729 ffd453e bf7e729 ffd453e bf7e729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import pandas as pd
import os
from datetime import datetime
from .utils import (
parse_round_time_to_seconds, parse_striking_stats, to_int_safe,
calculate_age, prepare_fighters_data
)
from .config import DEFAULT_ELO, N_FIGHTS_HISTORY
def _get_fighter_history_stats(
fighter_name: str,
current_fight_date: datetime,
fighter_history: list[dict[str, any]],
fighters_df: pd.DataFrame,
n: int = N_FIGHTS_HISTORY
) -> dict[str, float]:
"""
Calculates performance statistics for a fighter based on their last n fights.
"""
past_fights = [f for f in fighter_history if f['date_obj'] < current_fight_date]
last_n_fights = past_fights[-n:]
if not last_n_fights:
# Return a default dictionary with the correct keys for a fighter with no history
return {
'wins_last_n': 0,
'avg_opp_elo_last_n': DEFAULT_ELO,
'ko_percent_last_n': 0,
'sig_str_landed_per_min_last_n': 0,
'takedown_accuracy_last_n': 0,
'sub_attempts_per_min_last_n': 0,
}
stats = {
'wins': 0, 'ko_wins': 0, 'total_time_secs': 0,
'sig_str_landed': 0, 'opponent_elos': [],
'td_landed': 0, 'td_attempted': 0, 'sub_attempts': 0
}
for fight in last_n_fights:
is_fighter_1 = (fight['fighter_1'] == fighter_name)
opponent_name = fight['fighter_2'] if is_fighter_1 else fight['fighter_1']
f_prefix = 'f1' if is_fighter_1 else 'f2'
if fight['winner'] == fighter_name:
stats['wins'] += 1
if 'KO' in fight['method']:
stats['ko_wins'] += 1
if opponent_name in fighters_df.index:
opp_elo = fighters_df.loc[opponent_name, 'elo']
stats['opponent_elos'].append(opp_elo if pd.notna(opp_elo) else DEFAULT_ELO)
stats['total_time_secs'] += parse_round_time_to_seconds(fight['round'], fight['time'])
sig_str_stat = fight.get(f'{f_prefix}_sig_str', '0 of 0')
landed, _ = parse_striking_stats(sig_str_stat)
stats['sig_str_landed'] += landed
td_stat = fight.get(f'{f_prefix}_td', '0 of 0')
td_landed, td_attempted = parse_striking_stats(td_stat)
stats['td_landed'] += td_landed
stats['td_attempted'] += td_attempted
stats['sub_attempts'] += to_int_safe(fight.get(f'{f_prefix}_sub_att'))
# Final calculations
avg_opp_elo = sum(stats['opponent_elos']) / len(stats['opponent_elos']) if stats['opponent_elos'] else 1500
total_minutes = stats['total_time_secs'] / 60 if stats['total_time_secs'] > 0 else 0
return {
'wins_last_n': stats['wins'],
'avg_opp_elo_last_n': avg_opp_elo,
'ko_percent_last_n': (stats['ko_wins'] / stats['wins']) if stats['wins'] > 0 else 0,
'sig_str_landed_per_min_last_n': (stats['sig_str_landed'] / total_minutes) if total_minutes > 0 else 0,
'takedown_accuracy_last_n': (stats['td_landed'] / stats['td_attempted']) if stats['td_attempted'] > 0 else 0,
'sub_attempts_per_min_last_n': (stats['sub_attempts'] / total_minutes) if total_minutes > 0 else 0,
}
def preprocess_for_ml(
fights_to_process: list[dict[str, any]],
fighters_csv_path: str
) -> tuple[pd.DataFrame, pd.Series, pd.DataFrame]:
"""
Transforms raw fight and fighter data into a feature matrix (X) and target vector (y)
suitable for a binary classification machine learning model.
Args:
fights_to_process: The list of fights to process.
fighters_csv_path: Path to the CSV file with all fighter stats.
Returns:
Feature matrix X, target vector y, and metadata DataFrame.
"""
if not os.path.exists(fighters_csv_path):
raise FileNotFoundError(f"Fighters data not found at '{fighters_csv_path}'.")
fighters_df = pd.read_csv(fighters_csv_path)
fighters_prepared = prepare_fighters_data(fighters_df)
# 2. Pre-calculate fighter histories to speed up lookups
# And convert date strings to datetime objects once
for fight in fights_to_process:
try:
# This will work if event_date is a string
fight['date_obj'] = datetime.strptime(fight['event_date'], '%B %d, %Y')
except TypeError:
# This will be triggered if it's already a date-like object (e.g., Timestamp)
fight['date_obj'] = fight['event_date']
fighter_histories = {}
for fighter_name in fighters_prepared.index:
history = [f for f in fights_to_process if fighter_name in (f['fighter_1'], f['fighter_2'])]
fighter_histories[fighter_name] = sorted(history, key=lambda x: x['date_obj'])
# 3. Process fights to create features and targets
feature_list = []
target_list = []
metadata_list = []
for fight in fights_to_process:
# Per the dataset's design, fighter_1 is always the winner.
f1_name, f2_name = fight['fighter_1'], fight['fighter_2']
if f1_name not in fighters_prepared.index or f2_name not in fighters_prepared.index:
continue
f1_stats, f2_stats = fighters_prepared.loc[f1_name], fighters_prepared.loc[f2_name]
if isinstance(f1_stats, pd.DataFrame): f1_stats = f1_stats.iloc[0]
if isinstance(f2_stats, pd.DataFrame): f2_stats = f2_stats.iloc[0]
# Calculate ages for both fighters
f1_age = calculate_age(f1_stats.get('dob'), fight['event_date'])
f2_age = calculate_age(f2_stats.get('dob'), fight['event_date'])
# Get historical stats for both fighters
f1_hist_stats = _get_fighter_history_stats(f1_name, fight['date_obj'], fighter_histories.get(f1_name, []), fighters_prepared)
f2_hist_stats = _get_fighter_history_stats(f2_name, fight['date_obj'], fighter_histories.get(f2_name, []), fighters_prepared)
# --- Create two training examples from each fight for a balanced dataset ---
# 1. The "Win" case: (fighter_1 - fighter_2)
features_win = {
# Original diffs
'elo_diff': f1_stats.get('elo', 1500) - f2_stats.get('elo', 1500),
'height_diff_cm': f1_stats.get('height_cm', 0) - f2_stats.get('height_cm', 0),
'reach_diff_in': f1_stats.get('reach_in', 0) - f2_stats.get('reach_in', 0),
'age_diff_years': (f1_age - f2_age) if f1_age and f2_age else 0,
'stance_is_different': 1 if f1_stats.get('stance') != f2_stats.get('stance') else 0,
# New historical diffs
'wins_last_5_diff': f1_hist_stats['wins_last_n'] - f2_hist_stats['wins_last_n'],
'avg_opp_elo_last_5_diff': f1_hist_stats['avg_opp_elo_last_n'] - f2_hist_stats['avg_opp_elo_last_n'],
'ko_percent_last_5_diff': f1_hist_stats['ko_percent_last_n'] - f2_hist_stats['ko_percent_last_n'],
'sig_str_landed_per_min_last_5_diff': f1_hist_stats['sig_str_landed_per_min_last_n'] - f2_hist_stats['sig_str_landed_per_min_last_n'],
# Grappling features
'takedown_accuracy_last_5_diff': f1_hist_stats['takedown_accuracy_last_n'] - f2_hist_stats['takedown_accuracy_last_n'],
'sub_attempts_per_min_last_5_diff': f1_hist_stats['sub_attempts_per_min_last_n'] - f2_hist_stats['sub_attempts_per_min_last_n'],
}
feature_list.append(features_win)
target_list.append(1) # 1 represents a win
# 2. The "Loss" case: (fighter_2 - fighter_1)
# We invert the differences for the losing case.
features_loss = {key: -value for key, value in features_win.items()}
# Stance difference is symmetric; it doesn't get inverted.
features_loss['stance_is_different'] = features_win['stance_is_different']
feature_list.append(features_loss)
target_list.append(0) # 0 represents a loss
# Add metadata for both generated samples
# The 'winner' and 'loser' are consistent with the original data structure
metadata_list.append({
'winner': f1_name, 'loser': f2_name, 'event_date': fight['event_date']
})
metadata_list.append({
'winner': f1_name, 'loser': f2_name, 'event_date': fight['event_date']
})
X = pd.DataFrame(feature_list).fillna(0)
y = pd.Series(target_list, name='winner')
metadata = pd.DataFrame(metadata_list)
print(f"Preprocessing complete. Generated {X.shape[0]} samples with {X.shape[1]} features.")
return X, y, metadata
|