import os import re import json import torch import numpy as np import logging from typing import Dict, List, Tuple, Optional from tqdm import tqdm from pydantic import BaseModel from transformers import ( AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForQuestionAnswering, pipeline, LogitsProcessor, LogitsProcessorList, PreTrainedModel, PreTrainedTokenizer ) from sentence_transformers import SentenceTransformer, CrossEncoder from sklearn.feature_extraction.text import TfidfVectorizer from rank_bm25 import BM25Okapi import PyPDF2 from sklearn.cluster import KMeans import spacy import subprocess import gradio as gr logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s" ) class ConfidenceCalibrator(LogitsProcessor): def __init__(self, calibration_factor: float = 0.9): self.calibration_factor = calibration_factor def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: return scores / self.calibration_factor class DocumentResult(BaseModel): content: str confidence: float source_page: int supporting_evidence: List[str] class OptimalModelSelector: def __init__(self): self.qa_models = { "deberta-v3": ("deepset/deberta-v3-large-squad2", 0.87) } self.summarization_models = { "bart": ("facebook/bart-large-cnn", 0.85) } self.current_models = {} def get_best_model(self, task_type: str) -> Tuple[PreTrainedModel, PreTrainedTokenizer, float]: model_map = self.qa_models if "qa" in task_type else self.summarization_models best_model_name, best_score = max(model_map.items(), key=lambda x: x[1][1]) if best_model_name not in self.current_models: tokenizer = AutoTokenizer.from_pretrained(model_map[best_model_name][0]) model = (AutoModelForQuestionAnswering if "qa" in task_type else AutoModelForSeq2SeqLM).from_pretrained(model_map[best_model_name][0]) model = model.eval().half().to('cuda' if torch.cuda.is_available() else 'cpu') self.current_models[best_model_name] = (model, tokenizer) return *self.current_models[best_model_name], best_score class PDFAugmentedRetriever: def __init__(self, document_texts: List[str]): self.documents = [(i, text) for i, text in enumerate(document_texts)] self.bm25 = BM25Okapi([text.split() for _, text in self.documents]) self.encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') self.tfidf = TfidfVectorizer(stop_words='english').fit([text for _, text in self.documents]) def retrieve(self, query: str, top_k: int = 8) -> List[Tuple[int, str, float]]: # Increased from 5 to 8 bm25_scores = self.bm25.get_scores(query.split()) semantic_scores = self.encoder.predict([(query, doc) for _, doc in self.documents]) combined_scores = 0.4 * bm25_scores + 0.6 * np.array(semantic_scores) top_indices = np.argsort(combined_scores)[-top_k:][::-1] return [(self.documents[i][0], self.documents[i][1], float(combined_scores[i])) for i in top_indices] class DetailedExplainer: def __init__(self, explanation_model: str = "google/flan-t5-large", device: int = 0): try: self.nlp = spacy.load("en_core_web_sm") except OSError: subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True) self.nlp = spacy.load("en_core_web_sm") self.explainer = pipeline( "text2text-generation", model=explanation_model, tokenizer=explanation_model, device=device, max_length=2048, max_new_tokens=2000 ) def extract_concepts(self, text: str) -> list: doc = self.nlp(text) concepts = set() for chunk in doc.noun_chunks: if len(chunk) > 1 and not chunk.root.is_stop: concepts.add(chunk.text.strip()) for ent in doc.ents: if ent.label_ in ["PERSON", "ORG", "GPE", "NORP", "EVENT", "WORK_OF_ART"]: concepts.add(ent.text.strip()) return list(concepts) def explain_concept(self, concept: str, context: str, min_accuracy: float = 0.50) -> str: prompt = ( f"The following sentence from a PDF is given \n{context}\n\n\n" f"Now provide a detailed explanation of the concept '{concept}' mentioned above. " f"Include background information, context, examples, and significance. " f"Write a comprehensive explanation with at least {int(min_accuracy * 100)}% accuracy. " f"Make the explanation thorough and informative, up to 500 words if needed." ) result = self.explainer( prompt, do_sample=False, #max_length=2048, max_new_tokens=600 ) return result[0]["generated_text"].strip() def explain_text(self, text: str, context: str) -> dict: concepts = self.extract_concepts(text) explanations = {} for concept in concepts: explanations[concept] = self.explain_concept(concept, context) return {"concepts": concepts, "explanations": explanations} class AdvancedPDFAnalyzer: def __init__(self): self.logger = logging.getLogger("PDFAnalyzer") self.model_selector = OptimalModelSelector() self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.qa_model, self.qa_tokenizer, _ = self.model_selector.get_best_model("qa") self.qa_model = self.qa_model.to(self.device) self.summarizer = pipeline( "summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1, framework="pt", max_length=2048, min_length=100 ) self.logits_processor = LogitsProcessorList([ ConfidenceCalibrator(calibration_factor=0.85) ]) self.detailed_explainer = DetailedExplainer(device=0 if torch.cuda.is_available() else -1) def extract_text_with_metadata(self, file_path: str) -> List[Dict]: documents = [] with open(file_path, 'rb') as f: reader = PyPDF2.PdfReader(f) for i, page in enumerate(reader.pages): text = page.extract_text() if not text or not text.strip(): continue page_number = i + 1 metadata = { 'source': os.path.basename(file_path), 'page': page_number, 'char_count': len(text), 'word_count': len(text.split()), } documents.append({ 'content': self._clean_text(text), 'metadata': metadata }) if not documents: raise ValueError("No extractable content found in PDF") return documents def _clean_text(self, text: str) -> str: text = re.sub(r'[\x00-\x1F\x7F-\x9F]', ' ', text) text = re.sub(r'\s+', ' ', text) text = re.sub(r'(\w)-\s+(\w)', r'\1\2', text) return text.strip() def answer_question(self, question: str, documents: List[Dict]) -> Dict: retriever = PDFAugmentedRetriever([doc['content'] for doc in documents]) relevant_contexts = retriever.retrieve(question, top_k=5) # Increased context retrieval answers = [] for page_idx, context, similarity_score in relevant_contexts: inputs = self.qa_tokenizer( question, context, add_special_tokens=True, return_tensors="pt", max_length=1024, # Increased from 512 truncation=True, padding=True ) inputs = {k: v.to(self.device) for k, v in inputs.items()} with torch.no_grad(): outputs = self.qa_model(**inputs) start_logits = outputs.start_logits end_logits = outputs.end_logits logits_processor = LogitsProcessorList([ConfidenceCalibrator()]) start_logits = logits_processor(inputs['input_ids'], start_logits) end_logits = logits_processor(inputs['input_ids'], end_logits) start_prob = torch.nn.functional.softmax(start_logits, dim=-1) end_prob = torch.nn.functional.softmax(end_logits, dim=-1) max_start_score, max_start_idx = torch.max(start_prob, dim=-1) max_start_idx_int = max_start_idx.item() max_end_score, max_end_idx = torch.max(end_prob[0, max_start_idx_int:], dim=-1) max_end_idx_int = max_end_idx.item() + max_start_idx_int confidence = float((max_start_score * max_end_score) * 0.9 * similarity_score) answer_tokens = inputs["input_ids"][0][max_start_idx_int:max_end_idx_int + 1] answer = self.qa_tokenizer.decode(answer_tokens, skip_special_tokens=True) # Enhanced answer extraction for longer responses if len(answer.strip()) < 20: # If answer is too short, try extracting more context # Get more surrounding context extended_start = max(0, max_start_idx_int - 50) extended_end = min(len(inputs["input_ids"][0]), max_end_idx_int + 150) extended_tokens = inputs["input_ids"][0][extended_start:extended_end] extended_answer = self.qa_tokenizer.decode(extended_tokens, skip_special_tokens=True) if len(extended_answer.strip()) > len(answer.strip()): answer = extended_answer # Only generate explanations if we have a valid answer explanations_result = {"concepts": [], "explanations": {}} if answer and answer.strip(): try: explanations_result = self.detailed_explainer.explain_text(answer, context) except Exception as e: self.logger.warning(f"Failed to generate explanations: {e}") answers.append({ "answer": answer, "confidence": confidence, "context": context, "page_number": documents[page_idx]['metadata']['page'], "explanations": explanations_result }) if not answers: return { "answer": "No confident answer found", "confidence": 0.0, "explanations": {"concepts": [], "explanations": {}}, "page_number": 0, "context": "" } # Get the best answer based on confidence best_answer = max(answers, key=lambda x: x['confidence']) # For comprehensive responses, combine information from multiple high-confidence answers if len(answers) > 1: high_confidence_answers = [a for a in answers if a['confidence'] > 0.2] if len(high_confidence_answers) > 1: # Combine explanations from multiple sources combined_explanations = {} all_concepts = set() for ans in high_confidence_answers[:3]: # Use top 3 answers explanations = ans.get("explanations", {}).get("explanations", {}) concepts = ans.get("explanations", {}).get("concepts", []) all_concepts.update(concepts) combined_explanations.update(explanations) best_answer["explanations"]["explanations"] = combined_explanations best_answer["explanations"]["concepts"] = list(all_concepts) # FIXED: Always return the best answer dictionary, just modify the answer text if confidence is low if best_answer['confidence'] < 0.3: # Lowered threshold to be more permissive best_answer['answer'] = f"[Low Confidence] {best_answer['answer']}" return best_answer # Initialize analyzer (make sure to update the PDF path) analyzer = AdvancedPDFAnalyzer() # Global variable to store documents documents = [] def load_pdf(file_path: str): """Load PDF and extract documents""" global documents try: documents = analyzer.extract_text_with_metadata(file_path) return f"Successfully loaded PDF with {len(documents)} pages." except Exception as e: return f"Error loading PDF: {str(e)}" def ask_question_gradio(question: str): if not question.strip(): return "Please enter a valid question." if not documents: return "❌ No PDF loaded. Please load a PDF first." try: result = analyzer.answer_question(question, documents) # Ensure we have the expected structure answer = result.get('answer', 'No answer found') confidence = result.get('confidence', 0.0) page_number = result.get('page_number', 0) explanations = result.get("explanations", {}).get("explanations", {}) # Format explanations explanation_text = "" if explanations: explanation_text = "\n\n".join( f"🔹 **{concept}**: {desc}" for concept, desc in explanations.items() if desc and desc.strip() ) # Build response response_parts = [ f"📌 **Answer**: {answer}", f"🔒 **Confidence**: {confidence:.2f}", f"📄 **Page**: {page_number}" ] if explanation_text: response_parts.append(f"📘 **Explanations**:\n{explanation_text}") return "\n\n".join(response_parts) except Exception as e: return f"❌ Error: {str(e)}" # Load your PDF here - update the path to your actual PDF file pdf_path = "example.pdf" if os.path.exists(pdf_path): load_result = load_pdf(pdf_path) print(load_result) else: print(f"PDF file '{pdf_path}' not found. Please update the path.") demo = gr.Interface( fn=ask_question_gradio, inputs=gr.Textbox( label="Ask a question about the PDF", placeholder="Type your question here...", lines=3, max_lines=5 ), outputs=gr.Markdown( label="Answer", value="", show_copy_button=True ), title="Quandans AI - Ask Questions (Up to 2000 words)", description="Ask a question based on the document loaded in this system. The system can now provide comprehensive answers up to 2000 words with detailed explanations.", examples=[ "What is the main topic of this document?", "Provide a detailed summary of the key points from page 1", "What are the conclusions mentioned and explain them in detail?", "Give me a comprehensive overview of all the important concepts discussed" ], theme=gr.themes.Soft(), allow_flagging="never" ) demo.launch()