Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from sahi.prediction import ObjectPrediction | |
| from sahi.utils.cv import visualize_object_predictions, read_image | |
| from ultralyticsplus import YOLO, render_result | |
| image_path = [ | |
| ['test/web form.jpg', 'foduucom/web-form-ui-field-detection', 640, 0.25, 0.45], | |
| ['test/web form2.jpg', 'foduucom/web-form-ui-field-detection', 640, 0.25, 0.45] | |
| ] | |
| def yolov8_inference( | |
| image: gr.inputs.Image = None, | |
| model_path: gr.inputs.Dropdown = None, | |
| image_size: gr.inputs.Slider = 640, | |
| conf_threshold: gr.inputs.Slider = 0.25, | |
| iou_threshold: gr.inputs.Slider = 0.45, | |
| ): | |
| """ | |
| YOLOv8 inference function | |
| Args: | |
| image: Input image | |
| model_path: Path to the model | |
| image_size: Image size | |
| conf_threshold: Confidence threshold | |
| iou_threshold: IOU threshold | |
| Returns: | |
| Rendered image | |
| """ | |
| model = YOLO(model_path) | |
| model.overrides['conf'] = conf_threshold | |
| model.overrides['iou']= iou_threshold | |
| model.overrides['agnostic_nms'] = False # NMS class-agnostic | |
| model.overrides['max_det'] = 1000 | |
| image = read_image(image) | |
| results = model.predict(image) | |
| render = render_result(model=model, image=image, result=results[0]) | |
| return render | |
| inputs = [ | |
| gr.inputs.Image(type="filepath", label="Input Image"), | |
| gr.inputs.Dropdown(["foduucom/web-form-ui-field-detection"], | |
| default="foduucom/web-form-ui-field-detection", label="Model"), | |
| gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), | |
| gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), | |
| gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), | |
| ] | |
| outputs = gr.outputs.Image(type="filepath", label="Output Image") | |
| title = "Ui form : web form ui field Detection in Images" | |
| interface_image = gr.Interface( | |
| fn=yolov8_inference, | |
| inputs=inputs, | |
| outputs=outputs, | |
| title=title, | |
| examples=image_path, | |
| cache_examples=False, | |
| theme='huggingface' | |
| ) | |
| gr.TabbedInterface( | |
| [interface_image], | |
| tab_names=['Image inference'] | |
| ).queue().launch() |