File size: 16,416 Bytes
519c06d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
"""

RAG System Component

Retrieval-Augmented Generation for research papers

"""

import os
import warnings
from typing import List, Dict, Optional, Any
from datetime import datetime

# LangChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document

from .config import Config
from .groq_processor import GroqLlamaLLM

warnings.filterwarnings('ignore')


class RAGSystem:
    """

    Advanced RAG (Retrieval-Augmented Generation) System

    Combines vector database search with LLM reasoning

    """
    
    def __init__(self, config: Config = None):
        self.config = config or Config()
        # Ensure directories exist
        self.config.create_directories()
        
        self.embeddings = None
        self.vectorstore = None
        self.llm = None
        self.qa_chain = None
        self.text_splitter = None
        self.papers_metadata = {}
        
        self._initialize_components()
    
    def _initialize_components(self):
        """Initialize all RAG components"""
        try:
            # Initialize embeddings
            print("Initializing embeddings...")
            self.embeddings = HuggingFaceEmbeddings(
                model_name=self.config.EMBEDDING_MODEL,
                model_kwargs={'device': 'cpu'}
            )
            print("βœ… Embeddings initialized!")
            
            # Initialize text splitter
            self.text_splitter = RecursiveCharacterTextSplitter(
                chunk_size=self.config.CHUNK_SIZE,
                chunk_overlap=self.config.CHUNK_OVERLAP
            )
            print("βœ… Text splitter initialized!")
            
            # Initialize LLM
            print("Initializing LLM...")
            self.llm = GroqLlamaLLM(
                api_key=self.config.GROQ_API_KEY,
                model_name=self.config.LLAMA_MODEL,
                temperature=self.config.TEMPERATURE,
                max_tokens=self.config.MAX_OUTPUT_TOKENS,
                top_p=self.config.TOP_P
            )
            print("βœ… LLM initialized!")
            
            # Initialize or load vectorstore
            print("Initializing vectorstore...")
            self._initialize_vectorstore()
            
            # Initialize QA chain
            if self.vectorstore:
                print("Initializing QA chain...")
                self.qa_chain = RetrievalQA.from_chain_type(
                    llm=self.llm,
                    chain_type="stuff",
                    retriever=self.vectorstore.as_retriever(
                        search_kwargs={"k": self.config.TOP_K_SIMILAR}
                    ),
                    return_source_documents=True
                )
                print("βœ… QA chain initialized!")
            
            print("βœ… RAG System initialized successfully!")
            
        except Exception as e:
            print(f"❌ Error initializing RAG System: {e}")
            import traceback
            traceback.print_exc()
            raise
    
    def _initialize_vectorstore(self):
        """Initialize or load existing vectorstore"""
        try:
            # Ensure persist directory exists with absolute path
            persist_dir = os.path.abspath(self.config.PERSIST_DIRECTORY)
            print(f"Initializing vectorstore at: {persist_dir}")
            os.makedirs(persist_dir, exist_ok=True)
            
            # Check if directory has existing data
            has_existing_data = os.path.exists(persist_dir) and any(
                f for f in os.listdir(persist_dir) 
                if not f.startswith('.') and os.path.isfile(os.path.join(persist_dir, f))
            )
            
            if has_existing_data:
                print("Loading existing vectorstore...")
                self.vectorstore = Chroma(
                    persist_directory=persist_dir,
                    embedding_function=self.embeddings,
                    collection_name=self.config.COLLECTION_NAME
                )
                try:
                    count = self.vectorstore._collection.count()
                    print(f"βœ… Loaded vectorstore with {count} documents")
                except Exception as count_error:
                    print(f"βœ… Loaded vectorstore (document count unavailable: {count_error})")
            else:
                print("Creating new vectorstore...")
                self.vectorstore = Chroma(
                    persist_directory=persist_dir,
                    embedding_function=self.embeddings,
                    collection_name=self.config.COLLECTION_NAME
                )
                print("βœ… New vectorstore created successfully!")
                
        except Exception as e:
            print(f"❌ Error initializing vectorstore: {e}")
            print(f"   Persist directory: {getattr(self.config, 'PERSIST_DIRECTORY', 'NOT SET')}")
            print(f"   Collection name: {getattr(self.config, 'COLLECTION_NAME', 'NOT SET')}")
            print("   Continuing without vectorstore - search functionality will be limited")
            self.vectorstore = None
    
    def add_papers(self, papers: List[Dict[str, Any]]):
        """

        Add research papers to the RAG system

        

        Args:

            papers: List of paper dictionaries with 'title', 'content', 'summary', etc.

        """
        if not self.vectorstore:
            print("Vectorstore not initialized! Attempting to reinitialize...")
            try:
                self._initialize_vectorstore()
                if not self.vectorstore:
                    print("Failed to initialize vectorstore - papers will not be added to search index")
                    return
            except Exception as e:
                print(f"Failed to reinitialize vectorstore: {e}")
                return
        
        documents = []
        
        for paper in papers:
            # Create metadata - Chroma only supports str, int, float, bool, None
            authors = paper.get('authors', [])
            categories = paper.get('categories', [])
            
            metadata = {
                'title': str(paper.get('title', 'Unknown')),
                'authors': ', '.join(authors) if isinstance(authors, list) else str(authors),
                'published': str(paper.get('published', '')),
                'pdf_url': str(paper.get('pdf_url', '')),
                'arxiv_id': str(paper.get('arxiv_id', '')),
                'summary': str(paper.get('summary', '')),
                'categories': ', '.join(categories) if isinstance(categories, list) else str(categories),
                'source': str(paper.get('source', 'unknown')),
                'added_at': datetime.now().isoformat()
            }
            
            # Store metadata
            paper_id = paper.get('arxiv_id', paper.get('title', ''))
            self.papers_metadata[paper_id] = metadata
            
            # Process content
            content = paper.get('content', '')
            if not content:
                content = paper.get('summary', '')
            
            if content:
                # Split content into chunks
                chunks = self.text_splitter.split_text(content)
                
                # Create documents
                for i, chunk in enumerate(chunks):
                    doc_metadata = metadata.copy()
                    doc_metadata['chunk_id'] = i
                    doc_metadata['chunk_count'] = len(chunks)
                    
                    documents.append(Document(
                        page_content=chunk,
                        metadata=doc_metadata
                    ))
        
        if documents:
            try:
                print(f"Adding {len(documents)} chunks to vectorstore...")
                self.vectorstore.add_documents(documents)
                self.vectorstore.persist()
                print(f"βœ… Successfully added {len(documents)} chunks from {len(papers)} papers!")
            except Exception as e:
                print(f"❌ Error adding documents to vectorstore: {e}")
                print("   This may be due to metadata formatting issues")
                # Try to add documents one by one to identify problematic ones
                success_count = 0
                for i, doc in enumerate(documents):
                    try:
                        self.vectorstore.add_documents([doc])
                        success_count += 1
                    except Exception as doc_error:
                        print(f"   Failed to add document {i}: {doc_error}")
                        print(f"   Metadata: {doc.metadata}")
                
                if success_count > 0:
                    self.vectorstore.persist()
                    print(f"βœ… Successfully added {success_count}/{len(documents)} documents")
        else:
            print("No valid documents to add!")
    
    def search_papers(self, query: str, k: int = None) -> List[Dict[str, Any]]:
        """

        Search for relevant papers using vector similarity

        

        Args:

            query: Search query

            k: Number of results to return

            

        Returns:

            List of relevant paper chunks with metadata

        """
        if not self.vectorstore:
            print("Vectorstore not initialized!")
            return []
        
        try:
            k = k or self.config.TOP_K_SIMILAR
            results = self.vectorstore.similarity_search_with_score(query, k=k)
            
            formatted_results = []
            for doc, score in results:
                result = {
                    'content': doc.page_content,
                    'score': score,
                    'metadata': doc.metadata,
                    'title': doc.metadata.get('title', 'Unknown'),
                    'authors': doc.metadata.get('authors', []),
                    'published': doc.metadata.get('published', ''),
                    'summary': doc.metadata.get('summary', ''),
                    'arxiv_id': doc.metadata.get('arxiv_id', ''),
                    'pdf_url': doc.metadata.get('pdf_url', ''),
                    'categories': doc.metadata.get('categories', [])
                }
                formatted_results.append(result)
            
            return formatted_results
            
        except Exception as e:
            print(f"Search error: {e}")
            return []
    
    def answer_question(self, question: str) -> Dict[str, Any]:
        """

        Answer a research question using RAG

        

        Args:

            question: Research question

            

        Returns:

            Dictionary with answer and source information

        """
        if not self.qa_chain:
            return {
                'answer': "RAG system not properly initialized!",
                'sources': [],
                'error': "System not initialized"
            }
        
        try:
            print(f"Processing question: {question}")
            result = self.qa_chain({"query": question})
            
            # Extract source information
            sources = []
            for doc in result.get('source_documents', []):
                sources.append({
                    'title': doc.metadata.get('title', 'Unknown'),
                    'authors': doc.metadata.get('authors', []),
                    'content_snippet': doc.page_content[:200] + "..." if len(doc.page_content) > 200 else doc.page_content,
                    'arxiv_id': doc.metadata.get('arxiv_id', ''),
                    'pdf_url': doc.metadata.get('pdf_url', ''),
                    'chunk_id': doc.metadata.get('chunk_id', 0)
                })
            
            return {
                'answer': result['result'],
                'sources': sources,
                'question': question,
                'timestamp': datetime.now().isoformat()
            }
            
        except Exception as e:
            print(f"Error answering question: {e}")
            return {
                'answer': f"Error processing question: {str(e)}",
                'sources': [],
                'error': str(e)
            }
    
    def get_database_stats(self) -> Dict[str, Any]:
        """Get statistics about the knowledge base"""
        if not self.vectorstore:
            return {'status': 'not_initialized', 'count': 0}
        
        try:
            count = self.vectorstore._collection.count()
            return {
                'status': 'active',
                'total_chunks': count,
                'total_papers': len(self.papers_metadata),
                'embedding_model': self.config.EMBEDDING_MODEL,
                'chunk_size': self.config.CHUNK_SIZE,
                'chunk_overlap': self.config.CHUNK_OVERLAP
            }
        except Exception as e:
            return {'status': 'error', 'error': str(e)}
    
    def clear_database(self):
        """Clear all data from the vectorstore"""
        try:
            if self.vectorstore:
                self.vectorstore.delete_collection()
                print("Database cleared!")
            
            self.papers_metadata.clear()
            self._initialize_vectorstore()
            
        except Exception as e:
            print(f"Error clearing database: {e}")
    
    def export_papers_metadata(self) -> Dict[str, Any]:
        """Export papers metadata for backup or analysis"""
        return {
            'metadata': self.papers_metadata,
            'export_time': datetime.now().isoformat(),
            'total_papers': len(self.papers_metadata),
            'database_stats': self.get_database_stats()
        }
    
    def test_vectorstore(self) -> Dict[str, Any]:
        """Test vectorstore functionality and return status"""
        status = {
            'vectorstore_initialized': False,
            'can_add_documents': False,
            'can_search': False,
            'document_count': 0,
            'persist_directory': getattr(self.config, 'PERSIST_DIRECTORY', 'NOT SET'),
            'collection_name': getattr(self.config, 'COLLECTION_NAME', 'NOT SET'),
            'errors': []
        }
        
        try:
            if self.vectorstore is None:
                status['errors'].append("Vectorstore is None")
                return status
            
            status['vectorstore_initialized'] = True
            
            # Test document count
            try:
                count = self.vectorstore._collection.count()
                status['document_count'] = count
            except Exception as e:
                status['errors'].append(f"Cannot get document count: {e}")
            
            # Test adding a simple document
            try:
                test_doc = Document(
                    page_content="This is a test document",
                    metadata={"test": True, "source": "vectorstore_test"}
                )
                self.vectorstore.add_documents([test_doc])
                status['can_add_documents'] = True
                
                # Test searching
                results = self.vectorstore.similarity_search("test document", k=1)
                if results:
                    status['can_search'] = True
                    
                # Clean up test document
                try:
                    # Remove test document if possible
                    pass  # Chroma doesn't have easy delete by metadata
                except:
                    pass
                    
            except Exception as e:
                status['errors'].append(f"Cannot add/search documents: {e}")
            
        except Exception as e:
            status['errors'].append(f"Vectorstore test failed: {e}")
        
        return status