File size: 28,585 Bytes
519c06d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
"""

Research Assistant Component

Main research assistant logic and workflow management

"""

import os
import json
from typing import List, Dict, Optional, Any
from datetime import datetime
import logging

from .config import Config
from .groq_processor import GroqProcessor
from .rag_system import RAGSystem
from .unified_fetcher import PaperFetcher
from .pdf_processor import PDFProcessor
from .trend_monitor import AdvancedTrendMonitor


class ProjectManager:
    """Manages research projects"""
    
    def __init__(self, config: Config = None):
        self.config = config or Config()
        self.projects = {}
        self.project_counter = 0
        self.projects_file = os.path.join(self.config.BASE_DIR, 'projects.json')
        self.load_projects()
    
    def load_projects(self):
        """Load projects from storage"""
        try:
            if os.path.exists(self.projects_file):
                with open(self.projects_file, 'r') as f:
                    data = json.load(f)
                    self.projects = data.get('projects', {})
                    self.project_counter = data.get('counter', 0)
                print(f"Loaded {len(self.projects)} projects")
        except Exception as e:
            print(f"Error loading projects: {e}")
    
    def save_projects(self):
        """Save projects to storage"""
        try:
            os.makedirs(os.path.dirname(self.projects_file), exist_ok=True)
            with open(self.projects_file, 'w') as f:
                json.dump({
                    'projects': self.projects,
                    'counter': self.project_counter
                }, f, indent=2)
        except Exception as e:
            print(f"Error saving projects: {e}")
    
    def create_project(self, name: str, research_question: str, keywords: List[str], user_id: str) -> str:
        """Create a new research project"""
        self.project_counter += 1
        project_id = f"project_{self.project_counter}"
        
        self.projects[project_id] = {
            'id': project_id,
            'name': name,
            'research_question': research_question,
            'keywords': keywords,
            'papers': [],
            'notes': [],
            'status': 'active',
            'user_id': user_id,  # Track which user created this project
            'created_at': datetime.now().isoformat(),
            'updated_at': datetime.now().isoformat()
        }
        
        self.save_projects()
        return project_id
    
    def get_project(self, project_id: str, user_id: str = None) -> Optional[Dict[str, Any]]:
        """Get a project by ID, optionally checking user ownership"""
        project = self.projects.get(project_id)
        if project and user_id:
            # Check if user owns this project
            if project.get('user_id') != user_id:
                return None
        return project
    
    def update_project(self, project_id: str, user_id: str = None, **kwargs):
        """Update a project"""
        if project_id in self.projects:
            # Check user ownership if user_id provided
            if user_id and self.projects[project_id].get('user_id') != user_id:
                return False
            self.projects[project_id].update(kwargs)
            self.projects[project_id]['updated_at'] = datetime.now().isoformat()
            self.save_projects()
            return True
        return False
    
    def add_paper_to_project(self, project_id: str, paper: Dict[str, Any], user_id: str = None):
        """Add a paper to a project"""
        if project_id in self.projects:
            # Check user ownership if user_id provided
            if user_id and self.projects[project_id].get('user_id') != user_id:
                return False
            self.projects[project_id]['papers'].append(paper)
            self.update_project(project_id, user_id=user_id)
            return True
        return False
    
    def list_projects(self, user_id: str = None) -> List[Dict[str, Any]]:
        """List projects, optionally filtered by user ID"""
        if user_id:
            # Return only projects owned by this user
            return [project for project in self.projects.values() 
                   if project.get('user_id') == user_id]
        else:
            # Return all projects (for admin use)
            return list(self.projects.values())


class SimpleResearchAssistant:
    """

    Simplified research assistant that combines all components

    """
    
    def __init__(self, config: Config = None):
        self.config = config or Config()
        
        # Initialize components
        print("Initializing Research Assistant...")
        self.groq_processor = GroqProcessor(self.config)
        self.rag_system = RAGSystem(self.config)
        self.paper_fetcher = PaperFetcher(self.config)
        self.pdf_processor = PDFProcessor(self.config)
        self.project_manager = ProjectManager(self.config)
        self.trend_monitor = AdvancedTrendMonitor(self.groq_processor)
        
        print("Research Assistant initialized!")
        
        # Set up logging
        logging.basicConfig(level=getattr(logging, self.config.LOG_LEVEL))
        self.logger = logging.getLogger(__name__)
    
    def search_papers(self, query: str, max_results: int = 10, sources: List[str] = None) -> List[Dict[str, Any]]:
        """

        Search for papers across multiple sources

        

        Args:

            query: Search query

            max_results: Maximum number of results

            sources: List of sources to search ['arxiv', 'semantic_scholar', 'crossref', 'pubmed']

            

        Returns:

            List of papers

        """
        # Use all sources by default for comprehensive search
        if sources is None:
            sources = ['arxiv', 'semantic_scholar', 'crossref', 'pubmed']
        
        self.logger.info(f"Searching for: {query}")
        print(f"DEBUG: Starting multi-source search for '{query}' with max_results={max_results}")
        print(f"DEBUG: Using sources: {sources}")
        
        try:
            # Use the unified fetcher for all sources
            papers = self.paper_fetcher.search_papers(query, max_results, sources=sources)
            print(f"DEBUG: Unified fetcher returned {len(papers)} papers")
            
            # Add to RAG system for future querying
            if papers:
                try:
                    self.rag_system.add_papers(papers)
                    print("DEBUG: Papers added to RAG system")
                except Exception as e:
                    print(f"DEBUG: Failed to add papers to RAG system: {e}")
            
            self.logger.info(f"Found {len(papers)} papers from {len(sources)} sources")
            print(f"DEBUG: Returning {len(papers)} papers from multi-source search")
            return papers
            
        except Exception as e:
            print(f"DEBUG: Multi-source search failed: {e}")
            self.logger.error(f"Multi-source search failed: {e}")
            return []
    
    def ask_question(self, question: str, context: str = None) -> Dict[str, Any]:
        """

        Answer a research question using RAG

        

        Args:

            question: Research question

            context: Optional context

            

        Returns:

            Answer with sources

        """
        self.logger.info(f"Answering question: {question}")
        
        # Use RAG system if available
        if self.rag_system.vectorstore:
            return self.rag_system.answer_question(question)
        else:
            # Fallback to direct LLM
            answer = self.groq_processor.answer_question(question, context or "")
            return {
                'answer': answer,
                'sources': [],
                'method': 'direct_llm'
            }
    
    def process_pdf(self, file_path: str) -> Dict[str, Any]:
        """

        Process a PDF file

        

        Args:

            file_path: Path to PDF file

            

        Returns:

            Processing result

        """
        self.logger.info(f"Processing PDF: {file_path}")
        
        # Extract text
        extraction_result = self.pdf_processor.extract_text_from_file(file_path)
        
        if extraction_result.get('error'):
            return {'success': False, 'error': extraction_result['error']}
        
        text = extraction_result.get('text', '')
        
        # Extract basic information
        title = self._extract_title_from_text(text)
        abstract = self._extract_abstract_from_text(text)
        
        # Generate summary using Groq
        summary = self.groq_processor.summarize_paper(title, abstract, text)
        
        # Create paper object
        paper = {
            'title': title,
            'abstract': abstract,
            'content': text,
            'summary': summary,
            'source': 'uploaded_pdf',
            'file_path': file_path,
            'processed_at': datetime.now().isoformat(),
            'metadata': extraction_result.get('metadata', {})
        }
        
        # Try to add to RAG system (don't fail if RAG is not initialized)
        try:
            self.rag_system.add_papers([paper])
        except Exception as e:
            self.logger.warning(f"Could not add paper to RAG system: {e}")
        
        # Return formatted response with all expected fields
        return {
            'success': True,
            'title': title,
            'abstract': abstract,
            'text_length': len(text),
            'processed_at': datetime.now().isoformat(),
            'summary': summary,
            'paper': paper,
            'word_count': extraction_result.get('word_count', 0),
            'pages': extraction_result.get('metadata', {}).get('pages', 0)
        }
    
    def analyze_trends(self, topic: str, max_papers: int = 50) -> Dict[str, Any]:
        """

        Analyze research trends for a topic using advanced trend monitoring

        

        Args:

            topic: Research topic

            max_papers: Maximum papers to analyze

            

        Returns:

            Advanced trend analysis

        """
        self.logger.info(f"Analyzing trends for: {topic}")
        print(f"πŸ“Š Starting advanced trend analysis for '{topic}'")
        
        # Get papers from multiple sources for comprehensive analysis
        papers = self.search_papers(topic, max_papers)
        
        if not papers:
            return {'error': 'No papers found for trend analysis'}
        
        print(f"πŸ“Š Found {len(papers)} papers for trend analysis")
        
        # Use advanced trend monitor for comprehensive analysis
        trend_report = self.trend_monitor.generate_trend_report(papers)
        
        # Add metadata
        trend_report['query_metadata'] = {
            'topic': topic,
            'papers_analyzed': len(papers),
            'analysis_date': datetime.now().isoformat(),
            'analysis_type': 'advanced_trend_monitoring'
        }
        
        return trend_report
    
    def create_project(self, name: str, research_question: str, keywords: List[str], user_id: str) -> str:
        """Create a new research project"""
        return self.project_manager.create_project(name, research_question, keywords, user_id)
    
    def get_project(self, project_id: str, user_id: str = None) -> Optional[Dict[str, Any]]:
        """Get a project by ID"""
        return self.project_manager.get_project(project_id, user_id)
    
    def list_projects(self, user_id: str = None) -> List[Dict[str, Any]]:
        """List projects"""
        return self.project_manager.list_projects(user_id)
    
    def conduct_literature_search(self, project_id: str, max_papers: int = 20, user_id: str = None) -> Dict[str, Any]:
        """

        Conduct literature search for a project

        

        Args:

            project_id: Project ID

            max_papers: Maximum papers to find

            user_id: User ID to check ownership

            

        Returns:

            Search results

        """
        project = self.project_manager.get_project(project_id, user_id)
        if not project:
            return {'error': 'Project not found or access denied'}
        
        # Build search query
        query = f"{project['research_question']} {' '.join(project['keywords'])}"
        
        # Search for papers
        papers = self.search_papers(query, max_papers)
        
        # Add papers to project
        for paper in papers:
            self.project_manager.add_paper_to_project(project_id, paper, user_id)
        
        return {
            'project_id': project_id,
            'papers_found': len(papers),
            'papers': papers
        }
    
    def generate_literature_review(self, project_id: str, user_id: str = None) -> Dict[str, Any]:
        """

        Generate a literature review for a project

        

        Args:

            project_id: Project ID

            user_id: User ID to check ownership

            

        Returns:

            Literature review

        """
        try:
            project = self.project_manager.get_project(project_id, user_id)
            if not project:
                return {'error': 'Project not found or access denied'}
            
            papers = project.get('papers', [])
            if not papers:
                return {'error': 'No papers found in project'}
            
            print(f"Generating review for project {project_id} with {len(papers)} papers...")
            
            # Generate review
            review_content = self.groq_processor.generate_literature_review(
                papers, 
                project['research_question']
            )
            
            print(f"Review generated, length: {len(review_content) if review_content else 0}")
            
            if not review_content or review_content.startswith("Error"):
                return {'error': f'Failed to generate review: {review_content}'}
            
            return {
                'project_id': project_id,
                'review': {
                    'content': review_content,
                    'papers_count': len(papers),
                    'research_question': project['research_question']
                },
                'papers_reviewed': len(papers),
                'generated_at': datetime.now().isoformat()
            }
        except Exception as e:
            print(f"Error in generate_literature_review: {str(e)}")
            return {'error': f'Unexpected error: {str(e)}'}
    
    
    def get_system_status(self) -> Dict[str, Any]:
        """Get system status"""
        return {
            'status': 'operational',
            'components': {
                'groq_processor': 'ready',
                'rag_system': 'ready',
                'arxiv_fetcher': 'ready',
                'pdf_processor': 'ready',
                'project_manager': 'ready'
            },
            'statistics': {
                'rag_documents': self.rag_system.get_database_stats().get('total_chunks', 0),
                'system_version': '2.0.0',
                'status_check_time': datetime.now().isoformat()
            },
            'config': self.config.get_summary()
        }
    
    def _extract_title_from_text(self, text: str) -> str:
        """Extract title from PDF text"""
        lines = text.split('\n')[:20]  # Check first 20 lines
        
        for line in lines:
            line = line.strip()
            if len(line) > 10 and len(line) < 200:
                # Skip lines that look like headers or metadata
                if not any(keyword in line.lower() for keyword in ['page', 'arxiv', 'doi', 'submitted', 'accepted']):
                    return line
        
        return "Unknown Title"
    
    def _extract_abstract_from_text(self, text: str) -> str:
        """Extract abstract from PDF text"""
        text_lower = text.lower()
        
        # Look for abstract section
        abstract_start = text_lower.find('abstract')
        if abstract_start != -1:
            # Find the end of abstract (usually next section)
            abstract_text = text[abstract_start:]
            
            # Look for common section headers that might follow abstract
            section_headers = ['introduction', '1. introduction', '1 introduction', 'keywords', 'key words']
            
            end_pos = len(abstract_text)
            for header in section_headers:
                pos = abstract_text.lower().find(header)
                if pos != -1 and pos < end_pos:
                    end_pos = pos
            
            abstract = abstract_text[:end_pos]
            
            # Clean up
            abstract = abstract.replace('abstract', '', 1).strip()
            if len(abstract) > 1000:
                abstract = abstract[:1000] + "..."
            
            return abstract
        
        return "Abstract not found"


class ResearchMate:
    """

    Main ResearchMate interface

    Simplified wrapper around the research assistant

    """
    
    def __init__(self, config: Config = None):
        self.config = config or Config()
        self.assistant = SimpleResearchAssistant(self.config)
        self.version = "2.0.0"
        self.initialized_at = datetime.now().isoformat()
        
        print(f"ResearchMate {self.version} initialized!")
    
    def search(self, query: str, max_results: int = 10) -> Dict[str, Any]:
        """Search for papers"""
        try:
            papers = self.assistant.search_papers(query, max_results)
            return {
                'success': True,
                'query': query,
                'papers': papers,
                'count': len(papers)
            }
        except Exception as e:
            return {'success': False, 'error': str(e)}
    
    def ask(self, question: str) -> Dict[str, Any]:
        """Ask a research question"""
        try:
            result = self.assistant.ask_question(question)
            return {
                'success': True,
                'question': question,
                'answer': result['answer'],
                'sources': result.get('sources', [])
            }
        except Exception as e:
            return {'success': False, 'error': str(e)}
    
    def upload_pdf(self, file_path: str) -> Dict[str, Any]:
        """Process uploaded PDF"""
        try:
            result = self.assistant.process_pdf(file_path)
            return result
        except Exception as e:
            return {'success': False, 'error': str(e)}
    
    def analyze_trends(self, topic: str) -> Dict[str, Any]:
        """Analyze research trends"""
        try:
            result = self.assistant.analyze_trends(topic)
            return {'success': True, **result}
        except Exception as e:
            return {'success': False, 'error': str(e)}
    
    def create_project(self, name: str, research_question: str, keywords: List[str], user_id: str) -> Dict[str, Any]:
        """Create research project"""
        try:
            project_id = self.assistant.create_project(name, research_question, keywords, user_id)
            return {
                'success': True,
                'project_id': project_id,
                'message': f'Project "{name}" created successfully'
            }
        except Exception as e:
            return {'success': False, 'error': str(e)}
    
    def get_project(self, project_id: str, user_id: str = None) -> Dict[str, Any]:
        """Get project details"""
        try:
            project = self.assistant.get_project(project_id, user_id)
            if project:
                return {'success': True, 'project': project}
            else:
                return {'success': False, 'error': 'Project not found or access denied'}
        except Exception as e:
            return {'success': False, 'error': str(e)}
    
    def list_projects(self, user_id: str = None) -> Dict[str, Any]:
        """List projects"""
        try:
            projects = self.assistant.list_projects(user_id)
            return {'success': True, 'projects': projects}
        except Exception as e:
            return {'success': False, 'error': str(e)}
    
    def search_project_literature(self, project_id: str, max_papers: int = 20, user_id: str = None) -> Dict[str, Any]:
        """Search literature for a project"""
        try:
            result = self.assistant.conduct_literature_search(project_id, max_papers, user_id)
            return {'success': True, **result}
        except Exception as e:
            return {'success': False, 'error': str(e)}
    
    def generate_review(self, project_id: str, user_id: str = None) -> Dict[str, Any]:
        """Generate literature review for a project"""
        try:
            result = self.assistant.generate_literature_review(project_id, user_id)
            return {'success': True, **result}
        except Exception as e:
            return {'success': False, 'error': str(e)}
    
    def get_status(self) -> Dict[str, Any]:
        """Get system status"""
        try:
            status = self.assistant.get_system_status()
            return {'success': True, **status}
        except Exception as e:
            return {'success': False, 'error': str(e)}
    
    def analyze_project(self, project_id: str, user_id: str = None) -> Dict[str, Any]:
        """Analyze project literature"""
        try:
            project = self.assistant.get_project(project_id, user_id)
            if not project:
                return {'success': False, 'error': 'Project not found or access denied'}
            
            # Basic project analysis
            papers = project.get('papers', [])
            if not papers:
                return {'success': False, 'error': 'No papers found in project'}
            
            # Helper function to safely extract year
            def safe_year(paper):
                year = paper.get('year')
                if year is None:
                    return None
                try:
                    if isinstance(year, str):
                        year = int(year)
                    if isinstance(year, int) and 1900 <= year <= 2030:
                        return year
                except (ValueError, TypeError):
                    pass
                return None
            
            # Analyze papers
            total_papers = len(papers)
            
            # Process years more safely
            years = [safe_year(p) for p in papers]
            years = [y for y in years if y is not None]
            
            authors = []
            for p in papers:
                if p.get('authors'):
                    if isinstance(p.get('authors'), list):
                        authors.extend(p.get('authors'))
                    elif isinstance(p.get('authors'), str):
                        authors.append(p.get('authors'))
            
            # Extract key topics from keywords and titles
            all_keywords = []
            for p in papers:
                if p.get('keywords'):
                    if isinstance(p.get('keywords'), list):
                        all_keywords.extend(p.get('keywords'))
                    elif isinstance(p.get('keywords'), str):
                        all_keywords.extend(p.get('keywords').split(','))
            
            # Calculate year range safely
            year_range = "Unknown"
            if years:
                min_year = min(years)
                max_year = max(years)
                year_range = f"{min_year} - {max_year}" if min_year != max_year else str(min_year)
            
            # Count recent papers safely
            recent_papers_count = len([p for p in papers if safe_year(p) is not None and safe_year(p) >= 2020])
            
            # Basic analysis
            analysis = {
                'total_papers': total_papers,
                'year_range': year_range,
                'unique_authors': len(set(authors)) if authors else 0,
                'top_authors': list(set(authors))[:10] if authors else [],
                'key_topics': list(set([k.strip().lower() for k in all_keywords if k.strip()]))[:10] if all_keywords else [],
                'recent_papers': [p for p in papers if safe_year(p) is not None and safe_year(p) >= 2020][:5],
                'trends': f"Based on {total_papers} papers" + (f" spanning {year_range}" if years else ""),
                'insights': f"""## Key Research Insights



**Total Literature:** {total_papers} papers analyzed



**Research Scope:** {"Multi-year analysis spanning " + str(len(set(years))) + " different years" if len(years) > 1 else "Limited temporal scope"}



**Author Collaboration:** {len(set(authors))} unique researchers identified



**Key Themes:** {', '.join(list(set([k.strip().title() for k in all_keywords if k.strip()]))[:5]) if all_keywords else 'No specific themes identified'}



**Research Activity:** {"Active research area" if total_papers > 10 else "Emerging research area"}

""",
                'summary': f"""## Literature Analysis Summary



This project contains **{total_papers} research papers**{f" published between {year_range}" if years else ""}.



**Research Community:** The work involves {len(set(authors))} unique authors{f", with top contributors including {', '.join(list(set(authors))[:3])}" if len(authors) >= 3 else ""}.



**Research Focus:** {"The literature covers diverse topics including " + ', '.join(list(set([k.strip().title() for k in all_keywords if k.strip()]))[:5]) if all_keywords else "The research focus requires further analysis based on paper content"}.



**Temporal Distribution:** {"Recent research activity is strong" if recent_papers_count > total_papers * 0.5 else "Includes both historical and recent contributions"}.



**Research Maturity:** {"Well-established research area" if total_papers > 20 else "Growing research area"} with {"strong" if len(set(authors)) > 15 else "moderate"} community engagement.

"""
            }
            
            return {
                'success': True,
                'project_id': project_id,
                'analysis': analysis,
                'timestamp': datetime.now().isoformat()
            }
        except Exception as e:
            return {'success': False, 'error': str(e)}
    
    def ask_project_question(self, project_id: str, question: str) -> Dict[str, Any]:
        """Ask a question about a specific project"""
        try:
            project = self.assistant.get_project(project_id)
            if not project:
                return {'success': False, 'error': 'Project not found'}
            
            # Context-aware question answering
            context = f"Project: {project.get('name', '')}\n"
            context += f"Research Question: {project.get('research_question', '')}\n"
            context += f"Keywords: {', '.join(project.get('keywords', []))}\n"
            
            # Use RAG system with project context
            full_question = f"Context: {context}\n\nQuestion: {question}"
            result = self.assistant.ask_question(full_question)
            
            return {
                'success': True,
                'project_id': project_id,
                'question': question,
                'answer': result['answer'],
                'sources': result.get('sources', [])
            }
        except Exception as e:
            return {'success': False, 'error': str(e)}

    @property
    def trend_monitor(self):
        """Access to the advanced trend monitor"""
        return self.assistant.trend_monitor
    
    def search_papers(self, query: str, max_results: int = 10):
        """Direct access to paper search"""
        return self.assistant.search_papers(query, max_results)