""" Research Assistant Component Main research assistant logic and workflow management """ import os import json from typing import List, Dict, Optional, Any from datetime import datetime import logging from .config import Config from .groq_processor import GroqProcessor from .rag_system import RAGSystem from .unified_fetcher import PaperFetcher from .pdf_processor import PDFProcessor from .trend_monitor import AdvancedTrendMonitor class ProjectManager: """Manages research projects""" def __init__(self, config: Config = None): self.config = config or Config() self.projects = {} self.project_counter = 0 self.projects_file = os.path.join(self.config.BASE_DIR, 'projects.json') self.load_projects() def load_projects(self): """Load projects from storage""" try: if os.path.exists(self.projects_file): with open(self.projects_file, 'r') as f: data = json.load(f) self.projects = data.get('projects', {}) self.project_counter = data.get('counter', 0) print(f"Loaded {len(self.projects)} projects") except Exception as e: print(f"Error loading projects: {e}") def save_projects(self): """Save projects to storage""" try: os.makedirs(os.path.dirname(self.projects_file), exist_ok=True) with open(self.projects_file, 'w') as f: json.dump({ 'projects': self.projects, 'counter': self.project_counter }, f, indent=2) except Exception as e: print(f"Error saving projects: {e}") def create_project(self, name: str, research_question: str, keywords: List[str], user_id: str) -> str: """Create a new research project""" self.project_counter += 1 project_id = f"project_{self.project_counter}" self.projects[project_id] = { 'id': project_id, 'name': name, 'research_question': research_question, 'keywords': keywords, 'papers': [], 'notes': [], 'status': 'active', 'user_id': user_id, # Track which user created this project 'created_at': datetime.now().isoformat(), 'updated_at': datetime.now().isoformat() } self.save_projects() return project_id def get_project(self, project_id: str, user_id: str = None) -> Optional[Dict[str, Any]]: """Get a project by ID, optionally checking user ownership""" project = self.projects.get(project_id) if project and user_id: # Check if user owns this project if project.get('user_id') != user_id: return None return project def update_project(self, project_id: str, user_id: str = None, **kwargs): """Update a project""" if project_id in self.projects: # Check user ownership if user_id provided if user_id and self.projects[project_id].get('user_id') != user_id: return False self.projects[project_id].update(kwargs) self.projects[project_id]['updated_at'] = datetime.now().isoformat() self.save_projects() return True return False def add_paper_to_project(self, project_id: str, paper: Dict[str, Any], user_id: str = None): """Add a paper to a project""" if project_id in self.projects: # Check user ownership if user_id provided if user_id and self.projects[project_id].get('user_id') != user_id: return False self.projects[project_id]['papers'].append(paper) self.update_project(project_id, user_id=user_id) return True return False def list_projects(self, user_id: str = None) -> List[Dict[str, Any]]: """List projects, optionally filtered by user ID""" if user_id: # Return only projects owned by this user return [project for project in self.projects.values() if project.get('user_id') == user_id] else: # Return all projects (for admin use) return list(self.projects.values()) class SimpleResearchAssistant: """ Simplified research assistant that combines all components """ def __init__(self, config: Config = None): self.config = config or Config() # Initialize components print("Initializing Research Assistant...") self.groq_processor = GroqProcessor(self.config) self.rag_system = RAGSystem(self.config) self.paper_fetcher = PaperFetcher(self.config) self.pdf_processor = PDFProcessor(self.config) self.project_manager = ProjectManager(self.config) self.trend_monitor = AdvancedTrendMonitor(self.groq_processor) print("Research Assistant initialized!") # Set up logging logging.basicConfig(level=getattr(logging, self.config.LOG_LEVEL)) self.logger = logging.getLogger(__name__) def search_papers(self, query: str, max_results: int = 10, sources: List[str] = None) -> List[Dict[str, Any]]: """ Search for papers across multiple sources Args: query: Search query max_results: Maximum number of results sources: List of sources to search ['arxiv', 'semantic_scholar', 'crossref', 'pubmed'] Returns: List of papers """ # Use all sources by default for comprehensive search if sources is None: sources = ['arxiv', 'semantic_scholar', 'crossref', 'pubmed'] self.logger.info(f"Searching for: {query}") print(f"DEBUG: Starting multi-source search for '{query}' with max_results={max_results}") print(f"DEBUG: Using sources: {sources}") try: # Use the unified fetcher for all sources papers = self.paper_fetcher.search_papers(query, max_results, sources=sources) print(f"DEBUG: Unified fetcher returned {len(papers)} papers") # Add to RAG system for future querying if papers: try: self.rag_system.add_papers(papers) print("DEBUG: Papers added to RAG system") except Exception as e: print(f"DEBUG: Failed to add papers to RAG system: {e}") self.logger.info(f"Found {len(papers)} papers from {len(sources)} sources") print(f"DEBUG: Returning {len(papers)} papers from multi-source search") return papers except Exception as e: print(f"DEBUG: Multi-source search failed: {e}") self.logger.error(f"Multi-source search failed: {e}") return [] def ask_question(self, question: str, context: str = None) -> Dict[str, Any]: """ Answer a research question using RAG Args: question: Research question context: Optional context Returns: Answer with sources """ self.logger.info(f"Answering question: {question}") # Use RAG system if available if self.rag_system.vectorstore: return self.rag_system.answer_question(question) else: # Fallback to direct LLM answer = self.groq_processor.answer_question(question, context or "") return { 'answer': answer, 'sources': [], 'method': 'direct_llm' } def process_pdf(self, file_path: str) -> Dict[str, Any]: """ Process a PDF file Args: file_path: Path to PDF file Returns: Processing result """ self.logger.info(f"Processing PDF: {file_path}") # Extract text extraction_result = self.pdf_processor.extract_text_from_file(file_path) if extraction_result.get('error'): return {'success': False, 'error': extraction_result['error']} text = extraction_result.get('text', '') # Extract basic information title = self._extract_title_from_text(text) abstract = self._extract_abstract_from_text(text) # Generate summary using Groq summary = self.groq_processor.summarize_paper(title, abstract, text) # Create paper object paper = { 'title': title, 'abstract': abstract, 'content': text, 'summary': summary, 'source': 'uploaded_pdf', 'file_path': file_path, 'processed_at': datetime.now().isoformat(), 'metadata': extraction_result.get('metadata', {}) } # Try to add to RAG system (don't fail if RAG is not initialized) try: self.rag_system.add_papers([paper]) except Exception as e: self.logger.warning(f"Could not add paper to RAG system: {e}") # Return formatted response with all expected fields return { 'success': True, 'title': title, 'abstract': abstract, 'text_length': len(text), 'processed_at': datetime.now().isoformat(), 'summary': summary, 'paper': paper, 'word_count': extraction_result.get('word_count', 0), 'pages': extraction_result.get('metadata', {}).get('pages', 0) } def analyze_trends(self, topic: str, max_papers: int = 50) -> Dict[str, Any]: """ Analyze research trends for a topic using advanced trend monitoring Args: topic: Research topic max_papers: Maximum papers to analyze Returns: Advanced trend analysis """ self.logger.info(f"Analyzing trends for: {topic}") print(f"📊 Starting advanced trend analysis for '{topic}'") # Get papers from multiple sources for comprehensive analysis papers = self.search_papers(topic, max_papers) if not papers: return {'error': 'No papers found for trend analysis'} print(f"📊 Found {len(papers)} papers for trend analysis") # Use advanced trend monitor for comprehensive analysis trend_report = self.trend_monitor.generate_trend_report(papers) # Add metadata trend_report['query_metadata'] = { 'topic': topic, 'papers_analyzed': len(papers), 'analysis_date': datetime.now().isoformat(), 'analysis_type': 'advanced_trend_monitoring' } return trend_report def create_project(self, name: str, research_question: str, keywords: List[str], user_id: str) -> str: """Create a new research project""" return self.project_manager.create_project(name, research_question, keywords, user_id) def get_project(self, project_id: str, user_id: str = None) -> Optional[Dict[str, Any]]: """Get a project by ID""" return self.project_manager.get_project(project_id, user_id) def list_projects(self, user_id: str = None) -> List[Dict[str, Any]]: """List projects""" return self.project_manager.list_projects(user_id) def conduct_literature_search(self, project_id: str, max_papers: int = 20, user_id: str = None) -> Dict[str, Any]: """ Conduct literature search for a project Args: project_id: Project ID max_papers: Maximum papers to find user_id: User ID to check ownership Returns: Search results """ project = self.project_manager.get_project(project_id, user_id) if not project: return {'error': 'Project not found or access denied'} # Build search query query = f"{project['research_question']} {' '.join(project['keywords'])}" # Search for papers papers = self.search_papers(query, max_papers) # Add papers to project for paper in papers: self.project_manager.add_paper_to_project(project_id, paper, user_id) return { 'project_id': project_id, 'papers_found': len(papers), 'papers': papers } def generate_literature_review(self, project_id: str, user_id: str = None) -> Dict[str, Any]: """ Generate a literature review for a project Args: project_id: Project ID user_id: User ID to check ownership Returns: Literature review """ try: project = self.project_manager.get_project(project_id, user_id) if not project: return {'error': 'Project not found or access denied'} papers = project.get('papers', []) if not papers: return {'error': 'No papers found in project'} print(f"Generating review for project {project_id} with {len(papers)} papers...") # Generate review review_content = self.groq_processor.generate_literature_review( papers, project['research_question'] ) print(f"Review generated, length: {len(review_content) if review_content else 0}") if not review_content or review_content.startswith("Error"): return {'error': f'Failed to generate review: {review_content}'} return { 'project_id': project_id, 'review': { 'content': review_content, 'papers_count': len(papers), 'research_question': project['research_question'] }, 'papers_reviewed': len(papers), 'generated_at': datetime.now().isoformat() } except Exception as e: print(f"Error in generate_literature_review: {str(e)}") return {'error': f'Unexpected error: {str(e)}'} def get_system_status(self) -> Dict[str, Any]: """Get system status""" return { 'status': 'operational', 'components': { 'groq_processor': 'ready', 'rag_system': 'ready', 'arxiv_fetcher': 'ready', 'pdf_processor': 'ready', 'project_manager': 'ready' }, 'statistics': { 'rag_documents': self.rag_system.get_database_stats().get('total_chunks', 0), 'system_version': '2.0.0', 'status_check_time': datetime.now().isoformat() }, 'config': self.config.get_summary() } def _extract_title_from_text(self, text: str) -> str: """Extract title from PDF text""" lines = text.split('\n')[:20] # Check first 20 lines for line in lines: line = line.strip() if len(line) > 10 and len(line) < 200: # Skip lines that look like headers or metadata if not any(keyword in line.lower() for keyword in ['page', 'arxiv', 'doi', 'submitted', 'accepted']): return line return "Unknown Title" def _extract_abstract_from_text(self, text: str) -> str: """Extract abstract from PDF text""" text_lower = text.lower() # Look for abstract section abstract_start = text_lower.find('abstract') if abstract_start != -1: # Find the end of abstract (usually next section) abstract_text = text[abstract_start:] # Look for common section headers that might follow abstract section_headers = ['introduction', '1. introduction', '1 introduction', 'keywords', 'key words'] end_pos = len(abstract_text) for header in section_headers: pos = abstract_text.lower().find(header) if pos != -1 and pos < end_pos: end_pos = pos abstract = abstract_text[:end_pos] # Clean up abstract = abstract.replace('abstract', '', 1).strip() if len(abstract) > 1000: abstract = abstract[:1000] + "..." return abstract return "Abstract not found" class ResearchMate: """ Main ResearchMate interface Simplified wrapper around the research assistant """ def __init__(self, config: Config = None): self.config = config or Config() self.assistant = SimpleResearchAssistant(self.config) self.version = "2.0.0" self.initialized_at = datetime.now().isoformat() print(f"ResearchMate {self.version} initialized!") def search(self, query: str, max_results: int = 10) -> Dict[str, Any]: """Search for papers""" try: papers = self.assistant.search_papers(query, max_results) return { 'success': True, 'query': query, 'papers': papers, 'count': len(papers) } except Exception as e: return {'success': False, 'error': str(e)} def ask(self, question: str) -> Dict[str, Any]: """Ask a research question""" try: result = self.assistant.ask_question(question) return { 'success': True, 'question': question, 'answer': result['answer'], 'sources': result.get('sources', []) } except Exception as e: return {'success': False, 'error': str(e)} def upload_pdf(self, file_path: str) -> Dict[str, Any]: """Process uploaded PDF""" try: result = self.assistant.process_pdf(file_path) return result except Exception as e: return {'success': False, 'error': str(e)} def analyze_trends(self, topic: str) -> Dict[str, Any]: """Analyze research trends""" try: result = self.assistant.analyze_trends(topic) return {'success': True, **result} except Exception as e: return {'success': False, 'error': str(e)} def create_project(self, name: str, research_question: str, keywords: List[str], user_id: str) -> Dict[str, Any]: """Create research project""" try: project_id = self.assistant.create_project(name, research_question, keywords, user_id) return { 'success': True, 'project_id': project_id, 'message': f'Project "{name}" created successfully' } except Exception as e: return {'success': False, 'error': str(e)} def get_project(self, project_id: str, user_id: str = None) -> Dict[str, Any]: """Get project details""" try: project = self.assistant.get_project(project_id, user_id) if project: return {'success': True, 'project': project} else: return {'success': False, 'error': 'Project not found or access denied'} except Exception as e: return {'success': False, 'error': str(e)} def list_projects(self, user_id: str = None) -> Dict[str, Any]: """List projects""" try: projects = self.assistant.list_projects(user_id) return {'success': True, 'projects': projects} except Exception as e: return {'success': False, 'error': str(e)} def search_project_literature(self, project_id: str, max_papers: int = 20, user_id: str = None) -> Dict[str, Any]: """Search literature for a project""" try: result = self.assistant.conduct_literature_search(project_id, max_papers, user_id) return {'success': True, **result} except Exception as e: return {'success': False, 'error': str(e)} def generate_review(self, project_id: str, user_id: str = None) -> Dict[str, Any]: """Generate literature review for a project""" try: result = self.assistant.generate_literature_review(project_id, user_id) return {'success': True, **result} except Exception as e: return {'success': False, 'error': str(e)} def get_status(self) -> Dict[str, Any]: """Get system status""" try: status = self.assistant.get_system_status() return {'success': True, **status} except Exception as e: return {'success': False, 'error': str(e)} def analyze_project(self, project_id: str, user_id: str = None) -> Dict[str, Any]: """Analyze project literature""" try: project = self.assistant.get_project(project_id, user_id) if not project: return {'success': False, 'error': 'Project not found or access denied'} # Basic project analysis papers = project.get('papers', []) if not papers: return {'success': False, 'error': 'No papers found in project'} # Helper function to safely extract year def safe_year(paper): year = paper.get('year') if year is None: return None try: if isinstance(year, str): year = int(year) if isinstance(year, int) and 1900 <= year <= 2030: return year except (ValueError, TypeError): pass return None # Analyze papers total_papers = len(papers) # Process years more safely years = [safe_year(p) for p in papers] years = [y for y in years if y is not None] authors = [] for p in papers: if p.get('authors'): if isinstance(p.get('authors'), list): authors.extend(p.get('authors')) elif isinstance(p.get('authors'), str): authors.append(p.get('authors')) # Extract key topics from keywords and titles all_keywords = [] for p in papers: if p.get('keywords'): if isinstance(p.get('keywords'), list): all_keywords.extend(p.get('keywords')) elif isinstance(p.get('keywords'), str): all_keywords.extend(p.get('keywords').split(',')) # Calculate year range safely year_range = "Unknown" if years: min_year = min(years) max_year = max(years) year_range = f"{min_year} - {max_year}" if min_year != max_year else str(min_year) # Count recent papers safely recent_papers_count = len([p for p in papers if safe_year(p) is not None and safe_year(p) >= 2020]) # Basic analysis analysis = { 'total_papers': total_papers, 'year_range': year_range, 'unique_authors': len(set(authors)) if authors else 0, 'top_authors': list(set(authors))[:10] if authors else [], 'key_topics': list(set([k.strip().lower() for k in all_keywords if k.strip()]))[:10] if all_keywords else [], 'recent_papers': [p for p in papers if safe_year(p) is not None and safe_year(p) >= 2020][:5], 'trends': f"Based on {total_papers} papers" + (f" spanning {year_range}" if years else ""), 'insights': f"""## Key Research Insights **Total Literature:** {total_papers} papers analyzed **Research Scope:** {"Multi-year analysis spanning " + str(len(set(years))) + " different years" if len(years) > 1 else "Limited temporal scope"} **Author Collaboration:** {len(set(authors))} unique researchers identified **Key Themes:** {', '.join(list(set([k.strip().title() for k in all_keywords if k.strip()]))[:5]) if all_keywords else 'No specific themes identified'} **Research Activity:** {"Active research area" if total_papers > 10 else "Emerging research area"} """, 'summary': f"""## Literature Analysis Summary This project contains **{total_papers} research papers**{f" published between {year_range}" if years else ""}. **Research Community:** The work involves {len(set(authors))} unique authors{f", with top contributors including {', '.join(list(set(authors))[:3])}" if len(authors) >= 3 else ""}. **Research Focus:** {"The literature covers diverse topics including " + ', '.join(list(set([k.strip().title() for k in all_keywords if k.strip()]))[:5]) if all_keywords else "The research focus requires further analysis based on paper content"}. **Temporal Distribution:** {"Recent research activity is strong" if recent_papers_count > total_papers * 0.5 else "Includes both historical and recent contributions"}. **Research Maturity:** {"Well-established research area" if total_papers > 20 else "Growing research area"} with {"strong" if len(set(authors)) > 15 else "moderate"} community engagement. """ } return { 'success': True, 'project_id': project_id, 'analysis': analysis, 'timestamp': datetime.now().isoformat() } except Exception as e: return {'success': False, 'error': str(e)} def ask_project_question(self, project_id: str, question: str) -> Dict[str, Any]: """Ask a question about a specific project""" try: project = self.assistant.get_project(project_id) if not project: return {'success': False, 'error': 'Project not found'} # Context-aware question answering context = f"Project: {project.get('name', '')}\n" context += f"Research Question: {project.get('research_question', '')}\n" context += f"Keywords: {', '.join(project.get('keywords', []))}\n" # Use RAG system with project context full_question = f"Context: {context}\n\nQuestion: {question}" result = self.assistant.ask_question(full_question) return { 'success': True, 'project_id': project_id, 'question': question, 'answer': result['answer'], 'sources': result.get('sources', []) } except Exception as e: return {'success': False, 'error': str(e)} @property def trend_monitor(self): """Access to the advanced trend monitor""" return self.assistant.trend_monitor def search_papers(self, query: str, max_results: int = 10): """Direct access to paper search""" return self.assistant.search_papers(query, max_results)