""" Advanced Research Trend Monitor - Web App Version Based on the notebook implementation with enhanced features """ import json import time from datetime import datetime, timedelta from typing import List, Dict, Any, Optional from collections import defaultdict, Counter import re # Optional imports for advanced features try: import networkx as nx HAS_NETWORKX = True except ImportError: HAS_NETWORKX = False print("⚠️ NetworkX not available - some advanced features disabled") try: import matplotlib.pyplot as plt import seaborn as sns HAS_PLOTTING = True except ImportError: HAS_PLOTTING = False print("⚠️ Matplotlib/Seaborn not available - plotting features disabled") try: from wordcloud import WordCloud HAS_WORDCLOUD = True except ImportError: HAS_WORDCLOUD = False print("⚠️ WordCloud not available - word cloud features disabled") try: import numpy as np HAS_NUMPY = True except ImportError: HAS_NUMPY = False print("⚠️ NumPy not available - some numerical features disabled") class AdvancedTrendMonitor: """Advanced research trend monitoring with temporal analysis and gap detection""" def __init__(self, groq_processor=None): self.groq_processor = groq_processor self.trend_data = {} self.keyword_trends = defaultdict(list) self.temporal_data = defaultdict(list) self.gap_analysis_cache = {} print("✅ Advanced Research Trend Monitor initialized!") def analyze_temporal_trends(self, papers: List[Dict], timeframe: str = "yearly") -> Dict: """Analyze trends over time with sophisticated temporal analysis""" try: if not papers: return {'error': 'No papers provided for temporal analysis'} # Group papers by time period temporal_groups = defaultdict(list) year_counts = defaultdict(int) keyword_evolution = defaultdict(lambda: defaultdict(int)) for paper in papers: year = paper.get('year') if not year: continue # Handle different year formats if isinstance(year, str): try: year = int(year) except ValueError: continue if year < 1990 or year > 2030: # Filter unrealistic years continue temporal_groups[year].append(paper) year_counts[year] += 1 # Track keyword evolution title = paper.get('title', '').lower() abstract = paper.get('abstract', '').lower() content = f"{title} {abstract}" # Extract keywords (simple approach) keywords = self._extract_keywords(content) for keyword in keywords: keyword_evolution[year][keyword] += 1 # Calculate trends trends = { 'publication_trend': dict(sorted(year_counts.items())), 'keyword_evolution': dict(keyword_evolution), 'temporal_analysis': {}, 'growth_analysis': {}, 'emerging_topics': {}, 'declining_topics': {} } # Analyze publication growth years = sorted(year_counts.keys()) if len(years) >= 2: recent_years = years[-3:] # Last 3 years earlier_years = years[:-3] if len(years) > 3 else years[:-1] recent_avg = sum(year_counts[y] for y in recent_years) / len(recent_years) earlier_avg = sum(year_counts[y] for y in earlier_years) / len(earlier_years) if earlier_years else 0 growth_rate = ((recent_avg - earlier_avg) / earlier_avg * 100) if earlier_avg > 0 else 0 trends['growth_analysis'] = { 'recent_average': recent_avg, 'earlier_average': earlier_avg, 'growth_rate_percent': growth_rate, 'trend_direction': 'growing' if growth_rate > 5 else 'declining' if growth_rate < -5 else 'stable' } # Analyze emerging vs declining topics if len(years) >= 2: recent_year = years[-1] previous_year = years[-2] if len(years) > 1 else years[-1] recent_keywords = set(keyword_evolution[recent_year].keys()) previous_keywords = set(keyword_evolution[previous_year].keys()) emerging = recent_keywords - previous_keywords declining = previous_keywords - recent_keywords trends['emerging_topics'] = { 'topics': list(emerging)[:10], # Top 10 emerging 'count': len(emerging) } trends['declining_topics'] = { 'topics': list(declining)[:10], # Top 10 declining 'count': len(declining) } # Temporal analysis summary trends['temporal_analysis'] = { 'total_years': len(years), 'year_range': f"{min(years)}-{max(years)}" if years else "N/A", 'peak_year': max(year_counts.items(), key=lambda x: x[1])[0] if year_counts else None, 'total_papers': sum(year_counts.values()), 'average_per_year': sum(year_counts.values()) / len(years) if years else 0 } return trends except Exception as e: return { 'error': f'Temporal trend analysis failed: {str(e)}', 'analysis_timestamp': datetime.now().isoformat() } def detect_research_gaps(self, papers: List[Dict]) -> Dict: """Detect research gaps using advanced analysis""" try: if not papers: return {'error': 'No papers provided for gap analysis'} # Analyze methodologies methodologies = defaultdict(int) research_areas = defaultdict(int) data_types = defaultdict(int) evaluation_methods = defaultdict(int) # Common research area keywords area_keywords = { 'natural_language_processing': ['nlp', 'language', 'text', 'linguistic'], 'computer_vision': ['vision', 'image', 'visual', 'cv'], 'machine_learning': ['ml', 'learning', 'algorithm', 'model'], 'deep_learning': ['deep', 'neural', 'network', 'cnn', 'rnn'], 'reinforcement_learning': ['reinforcement', 'rl', 'agent', 'policy'], 'robotics': ['robot', 'robotic', 'manipulation', 'control'], 'healthcare': ['medical', 'health', 'clinical', 'patient'], 'finance': ['financial', 'trading', 'market', 'economic'], 'security': ['security', 'privacy', 'attack', 'defense'] } # Methodology keywords method_keywords = { 'supervised_learning': ['supervised', 'classification', 'regression'], 'unsupervised_learning': ['unsupervised', 'clustering', 'dimensionality'], 'semi_supervised': ['semi-supervised', 'few-shot', 'zero-shot'], 'transfer_learning': ['transfer', 'domain adaptation', 'fine-tuning'], 'federated_learning': ['federated', 'distributed', 'decentralized'], 'meta_learning': ['meta', 'learning to learn', 'few-shot'], 'explainable_ai': ['explainable', 'interpretable', 'explanation'], 'adversarial': ['adversarial', 'robust', 'attack'] } # Analyze papers for paper in papers: content = f"{paper.get('title', '')} {paper.get('abstract', '')}".lower() # Count research areas for area, keywords in area_keywords.items(): if any(keyword in content for keyword in keywords): research_areas[area] += 1 # Count methodologies for method, keywords in method_keywords.items(): if any(keyword in content for keyword in keywords): methodologies[method] += 1 # Identify data types if 'dataset' in content or 'data' in content: if any(word in content for word in ['text', 'corpus', 'language']): data_types['text'] += 1 elif any(word in content for word in ['image', 'visual', 'video']): data_types['image'] += 1 elif any(word in content for word in ['audio', 'speech', 'sound']): data_types['audio'] += 1 elif any(word in content for word in ['sensor', 'iot', 'time series']): data_types['sensor'] += 1 else: data_types['tabular'] += 1 # Identify gaps gaps = { 'methodology_gaps': [], 'research_area_gaps': [], 'data_type_gaps': [], 'interdisciplinary_gaps': [], 'emerging_gaps': [] } # Find underexplored methodologies total_papers = len(papers) for method, count in methodologies.items(): coverage = (count / total_papers) * 100 if coverage < 5: # Less than 5% coverage gaps['methodology_gaps'].append({ 'method': method.replace('_', ' ').title(), 'coverage_percent': coverage, 'papers_count': count }) # Find underexplored research areas for area, count in research_areas.items(): coverage = (count / total_papers) * 100 if coverage < 10: # Less than 10% coverage gaps['research_area_gaps'].append({ 'area': area.replace('_', ' ').title(), 'coverage_percent': coverage, 'papers_count': count }) # Find underexplored data types for dtype, count in data_types.items(): coverage = (count / total_papers) * 100 if coverage < 15: # Less than 15% coverage gaps['data_type_gaps'].append({ 'data_type': dtype.replace('_', ' ').title(), 'coverage_percent': coverage, 'papers_count': count }) # Generate AI-powered gap analysis if self.groq_processor: ai_analysis = self._generate_ai_gap_analysis(papers, gaps) gaps['ai_analysis'] = ai_analysis gaps['analysis_summary'] = { 'total_papers_analyzed': total_papers, 'methodology_gaps_found': len(gaps['methodology_gaps']), 'research_area_gaps_found': len(gaps['research_area_gaps']), 'data_type_gaps_found': len(gaps['data_type_gaps']), 'analysis_timestamp': datetime.now().isoformat() } return gaps except Exception as e: return { 'error': f'Gap detection failed: {str(e)}', 'analysis_timestamp': datetime.now().isoformat() } def generate_trend_report(self, papers: List[Dict]) -> Dict: """Generate comprehensive trend report""" try: if not papers: return {'error': 'No papers provided for trend report'} print(f"📊 Generating trend report for {len(papers)} papers...") # Run all analyses temporal_trends = self.analyze_temporal_trends(papers) research_gaps = self.detect_research_gaps(papers) # Generate keyword trends keyword_analysis = self._analyze_keyword_trends(papers) # Generate emerging topics emerging_topics = self._detect_emerging_topics(papers) # Generate AI-powered executive summary executive_summary = self._generate_executive_summary(papers, temporal_trends, research_gaps) # Compile comprehensive report report = { 'executive_summary': executive_summary, 'temporal_trends': temporal_trends, 'research_gaps': research_gaps, 'keyword_analysis': keyword_analysis, 'emerging_topics': emerging_topics, 'report_metadata': { 'papers_analyzed': len(papers), 'analysis_date': datetime.now().isoformat(), 'report_version': '2.0' } } return report except Exception as e: return { 'error': f'Trend report generation failed: {str(e)}', 'analysis_timestamp': datetime.now().isoformat() } def _extract_keywords(self, content: str) -> List[str]: """Extract keywords from content using simple NLP""" # Remove common words and extract meaningful terms stop_words = {'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'a', 'an', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'could', 'should', 'may', 'might', 'must', 'shall', 'can', 'this', 'that', 'these', 'those', 'we', 'they', 'our', 'their', 'using', 'based', 'approach', 'method', 'model', 'paper', 'study', 'research', 'work', 'results', 'show', 'propose', 'present'} # Extract words (simple tokenization) words = re.findall(r'\b[a-zA-Z]+\b', content.lower()) # Filter keywords keywords = [word for word in words if len(word) > 3 and word not in stop_words] # Return top keywords return list(Counter(keywords).keys())[:20] def _analyze_keyword_trends(self, papers: List[Dict]) -> Dict: """Analyze keyword trends over time""" try: keyword_by_year = defaultdict(lambda: defaultdict(int)) for paper in papers: year = paper.get('year') if not year: continue content = f"{paper.get('title', '')} {paper.get('abstract', '')}".lower() keywords = self._extract_keywords(content) for keyword in keywords[:10]: # Top 10 keywords per paper keyword_by_year[year][keyword] += 1 # Find trending keywords trending_keywords = {} for keyword in set().union(*[keywords.keys() for keywords in keyword_by_year.values()]): years = sorted(keyword_by_year.keys()) if len(years) >= 2: recent_count = keyword_by_year[years[-1]][keyword] previous_count = keyword_by_year[years[-2]][keyword] if previous_count > 0: trend = ((recent_count - previous_count) / previous_count) * 100 trending_keywords[keyword] = trend # Get top trending keywords top_trending = sorted(trending_keywords.items(), key=lambda x: x[1], reverse=True)[:10] return { 'keyword_evolution': dict(keyword_by_year), 'trending_keywords': top_trending, 'analysis_timestamp': datetime.now().isoformat() } except Exception as e: return { 'error': f'Keyword trend analysis failed: {str(e)}', 'analysis_timestamp': datetime.now().isoformat() } def _detect_emerging_topics(self, papers: List[Dict]) -> Dict: """Detect emerging research topics""" try: # Group papers by recent years recent_papers = [] older_papers = [] current_year = datetime.now().year for paper in papers: year = paper.get('year') if not year: continue if isinstance(year, str): try: year = int(year) except ValueError: continue if year >= current_year - 2: # Last 2 years recent_papers.append(paper) else: older_papers.append(paper) # Extract topics from recent vs older papers recent_topics = set() older_topics = set() for paper in recent_papers: content = f"{paper.get('title', '')} {paper.get('abstract', '')}".lower() topics = self._extract_keywords(content) recent_topics.update(topics[:5]) # Top 5 topics per paper for paper in older_papers: content = f"{paper.get('title', '')} {paper.get('abstract', '')}".lower() topics = self._extract_keywords(content) older_topics.update(topics[:5]) # Find emerging topics (in recent but not in older) emerging = recent_topics - older_topics return { 'emerging_topics': list(emerging)[:15], # Top 15 emerging topics 'recent_papers_count': len(recent_papers), 'older_papers_count': len(older_papers), 'analysis_timestamp': datetime.now().isoformat() } except Exception as e: return { 'error': f'Emerging topic detection failed: {str(e)}', 'analysis_timestamp': datetime.now().isoformat() } def _generate_ai_gap_analysis(self, papers: List[Dict], gaps: Dict) -> str: """Generate AI-powered gap analysis""" try: if not self.groq_processor: return "AI analysis not available - Groq processor not initialized" # Prepare summary for AI analysis summary = f""" Research Gap Analysis Summary: - Total Papers Analyzed: {len(papers)} - Methodology Gaps Found: {len(gaps['methodology_gaps'])} - Research Area Gaps Found: {len(gaps['research_area_gaps'])} - Data Type Gaps Found: {len(gaps['data_type_gaps'])} Top Methodology Gaps: {', '.join([gap['method'] for gap in gaps['methodology_gaps'][:5]])} Top Research Area Gaps: {', '.join([gap['area'] for gap in gaps['research_area_gaps'][:5]])} """ prompt = f"""Based on this research gap analysis, provide insights on: {summary} Please provide: 1. **Key Research Gaps**: Most significant gaps and why they matter 2. **Opportunities**: Potential research opportunities in underexplored areas 3. **Recommendations**: Specific recommendations for future research 4. **Priority Areas**: Which gaps should be prioritized and why Format as a structured analysis.""" response = self.groq_processor.generate_response(prompt, max_tokens=1500) return response except Exception as e: return f"AI gap analysis failed: {str(e)}" def _generate_executive_summary(self, papers: List[Dict], temporal_trends: Dict, research_gaps: Dict) -> str: """Generate executive summary of trend analysis""" try: if not self.groq_processor: return "Executive summary not available - Groq processor not initialized" # Prepare data for summary growth_info = temporal_trends.get('growth_analysis', {}) gap_summary = research_gaps.get('analysis_summary', {}) prompt = f"""Generate an executive summary for this research trend analysis: Papers Analyzed: {len(papers)} Publication Growth: {growth_info.get('trend_direction', 'unknown')} ({growth_info.get('growth_rate_percent', 0):.1f}%) Research Gaps Found: {gap_summary.get('methodology_gaps_found', 0)} methodology gaps, {gap_summary.get('research_area_gaps_found', 0)} area gaps Temporal Analysis: - Year Range: {temporal_trends.get('temporal_analysis', {}).get('year_range', 'N/A')} - Peak Year: {temporal_trends.get('temporal_analysis', {}).get('peak_year', 'N/A')} - Average Papers/Year: {temporal_trends.get('temporal_analysis', {}).get('average_per_year', 0):.1f} Provide a 3-paragraph executive summary covering: 1. Overall research landscape and trends 2. Key findings and patterns 3. Implications and future directions""" response = self.groq_processor.generate_response(prompt, max_tokens=1000) return response except Exception as e: return f"Executive summary generation failed: {str(e)}" def get_trend_summary(self) -> Dict: """Get summary of all trend data""" return { 'total_trends_tracked': len(self.trend_data), 'keyword_trends_count': len(self.keyword_trends), 'temporal_data_points': sum(len(data) for data in self.temporal_data.values()), 'last_analysis': datetime.now().isoformat() }