File size: 16,170 Bytes
c6f7445
 
5671ec3
 
 
b467d1d
 
0399867
 
 
 
 
 
b467d1d
 
 
5671ec3
0ba2c5f
 
 
98888dc
0ba2c5f
5671ec3
 
 
b467d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
941f1c3
2b09e56
 
b467d1d
7e95e63
0399867
 
 
 
 
 
 
 
 
 
6dfb995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0399867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5671ec3
 
 
 
 
 
 
 
 
 
 
0399867
98888dc
0399867
98888dc
0399867
98888dc
0399867
 
 
98888dc
 
 
0399867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98888dc
0399867
 
98888dc
0399867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b467d1d
 
 
 
 
 
 
6dfb995
b467d1d
6dfb995
b467d1d
 
 
 
0399867
 
6dfb995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0399867
6dfb995
 
 
c6f7445
87a1ca5
941f1c3
6dfb995
 
 
 
 
 
 
 
 
941f1c3
6dfb995
941f1c3
6dfb995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
941f1c3
0399867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98888dc
b467d1d
941f1c3
b467d1d
 
 
941f1c3
b467d1d
 
 
 
 
 
941f1c3
b467d1d
 
 
 
 
941f1c3
 
 
87a1ca5
 
 
941f1c3
 
 
0399867
6dfb995
0399867
b467d1d
 
 
 
 
 
 
 
 
941f1c3
b467d1d
0ba2c5f
0399867
 
0ba2c5f
98888dc
 
f0f09ac
98888dc
0399867
 
 
98888dc
941f1c3
 
 
 
0399867
98888dc
 
 
6dfb995
 
 
 
941f1c3
6dfb995
 
0399867
6dfb995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98888dc
 
 
b467d1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import streamlit as st
from transformers import pipeline
import google.generativeai as genai
import json
import random
import os
from dotenv import load_dotenv
import langdetect
from langdetect import detect, DetectorFactory
from langdetect.lang_detect_exception import LangDetectException

# Set seed for consistent language detection
DetectorFactory.seed = 0

# Load environment variables
load_dotenv()

# Load language configurations from JSON
with open('languages_config.json', 'r', encoding='utf-8') as f:
    LANGUAGES = json.load(f)['LANGUAGES']

# Load the JSON data for emotion templates
with open('emotion_templates.json', 'r') as f:
    data = json.load(f)

# Configure Gemini API
gemini_api_key = os.getenv("GEMINI_API_KEY")
if not gemini_api_key:
    st.error("GEMINI_API_KEY not found in environment variables. Please set it in your .env file.")
    st.stop()

genai.configure(api_key=gemini_api_key)
model = genai.GenerativeModel('gemini-2.0-flash')

# Configure Hugging Face API (optional, for private models or rate limiting)
hf_token = os.getenv("HUGGINGFACE_TOKEN")
if hf_token:
    os.environ["HUGGINGFACE_HUB_TOKEN"] = hf_token 

# Available emotion detection models
EMOTION_MODELS = {
    "AnasAlokla/multilingual_go_emotions": "Multilingual Go Emotions (Original)",
    "AnasAlokla/multilingual_go_emotions_V1.1": "Multilingual Go Emotions (V1.1)",
    "AnasAlokla/multilingual_go_emotions_V1.2": "Multilingual Go Emotions (V1.2)"
}

# Language mapping for detection
SUPPORTED_LANGUAGES = {
    'en': 'English',
    'ar': 'Arabic', 
    'fr': 'French',
    'es': 'Spanish',
    'nl': 'Dutch',
    'tr': 'Turkish'
}

def normalize_emotion_predictions(predictions):
    """
    Normalize emotion predictions to ensure consistent format.
    Handles different return formats from Hugging Face pipelines.
    """
    try:
        # If predictions is a list of lists (multiple inputs)
        if isinstance(predictions, list) and len(predictions) > 0:
            if isinstance(predictions[0], list):
                # Take the first prediction set
                predictions = predictions[0]
            
            # Ensure each prediction has the required keys
            normalized = []
            for pred in predictions:
                if isinstance(pred, dict):
                    # Handle different possible key names
                    label = pred.get('label') or pred.get('LABEL') or pred.get('emotion', 'unknown')
                    score = pred.get('score') or pred.get('SCORE') or pred.get('confidence', 0.0)
                    
                    normalized.append({
                        'label': str(label).lower(),
                        'score': float(score)
                    })
                else:
                    # Handle unexpected format
                    st.warning(f"Unexpected prediction format: {pred}")
                    continue
            
            return normalized if normalized else [{'label': 'neutral', 'score': 1.0}]
        
        else:
            # Handle case where predictions is not in expected format
            st.warning(f"Unexpected predictions format: {type(predictions)}")
            return [{'label': 'neutral', 'score': 1.0}]
            
    except Exception as e:
        st.error(f"Error normalizing predictions: {str(e)}")
        return [{'label': 'neutral', 'score': 1.0}]

def detect_language(text):
    """Detect the language of the input text."""
    try:
        detected_lang = detect(text)
        if detected_lang in SUPPORTED_LANGUAGES:
            return detected_lang
        else:
            return 'en'  # Default to English if language not supported
    except LangDetectException:
        return 'en'  # Default to English if detection fails

def get_language_name(lang_code):
    """Get the full language name from language code."""
    return SUPPORTED_LANGUAGES.get(lang_code, 'English')

def categorize_emotion(emotion):
    """Categorize emotion as positive, negative, or neutral."""
    positive_emotions = ['admiration', 'amusement', 'approval', 'caring', 'curiosity', 
                        'desire', 'excitement', 'gratitude', 'joy', 'love', 'optimism', 
                        'pride', 'relief']
    negative_emotions = ['anger', 'annoyance', 'confusion', 'disappointment', 'disapproval', 
                        'disgust', 'embarrassment', 'fear', 'grief', 'nervousness', 
                        'remorse', 'sadness']
    
    if emotion in positive_emotions:
        return 'positive'
    elif emotion in negative_emotions:
        return 'negative'
    else:
        return 'neutral'

def generate_text(prompt, context=""):
    """
    Generates text using the Gemini model.
    """
    try:
        response = model.generate_content(prompt)
        return response.text
    except Exception as e:
        print(f"Error generating text: {e}")
        return "I am sorry, I encountered an error while generating the text."

def create_enhanced_prompt(emotion, topic, detected_language, emotion_score):
    """
    Creates an enhanced emotional prompt based on detected language and emotion intensity.
    """
    # Get base template from emotion_templates.json
    templates = data["emotion_templates"][emotion]
    base_prompt = random.choice(templates)
    
    # Replace placeholders
    if topic:
        placeholders = ["[topic/person]", "[topic]", "[person]", "[object]", "[outcome]"]
        for placeholder in placeholders:
            base_prompt = base_prompt.replace(placeholder, topic)
    
    # Get language name
    language_name = get_language_name(detected_language)
    
    # Get emotion category
    emotion_category = categorize_emotion(emotion)
    
    # Get emotional enhancers from JSON file
    emotional_enhancers = data.get("emotional_enhancers", {})
    language_enhancers = emotional_enhancers.get(detected_language, emotional_enhancers.get('en', {}))
    emotion_enhancer = ""
    
    if language_enhancers and emotion_category in language_enhancers:
        emotion_enhancer = random.choice(language_enhancers[emotion_category])
    
    # Calculate emotion intensity
    intensity = "high" if emotion_score > 0.7 else "moderate" if emotion_score > 0.4 else "low"
    
    # Create enhanced prompt
    enhanced_prompt = f"""
You are an emotionally intelligent AI assistant. Respond with genuine {emotion} emotion at {intensity} intensity.

Language Instructions:
- Respond ONLY in {language_name}
- Use natural, native-speaker expressions
- Match the emotional tone of a {language_name} speaker

Emotional Guidelines:
- The detected emotion is: {emotion} (confidence: {emotion_score:.2f})
- Emotion category: {emotion_category}
- Use emotionally resonant words like: {emotion_enhancer}
- Express {emotion} authentically and appropriately
- Make your response feel genuinely {emotion_category}

Context: {base_prompt}

Topic to respond about: {topic}

Requirements:
- Keep response concise but emotionally expressive (2-4 sentences)
- Use appropriate emotional language for {emotion}
- Sound natural in {language_name}
- Show empathy and understanding
- Match the emotional intensity of the user's input
"""
    
    return enhanced_prompt

@st.cache_resource
def load_emotion_classifier(model_name):
    """Load and cache the emotion classifier model."""
    try:
        # Use the HF token if available for authentication
        if hf_token:
            return pipeline("text-classification", model=model_name, use_auth_token=hf_token, top_k=None)
        else:
            return pipeline("text-classification", model=model_name, top_k=None)
    except Exception as e:
        st.error(f"Error loading model {model_name}: {str(e)}")
        return None

def get_ai_response(user_input, emotion_predictions, detected_language):
    """Generates AI response based on user input, detected emotions, and language."""
    try:
        # Ensure predictions are normalized
        normalized_predictions = normalize_emotion_predictions(emotion_predictions)
        
        dominant_emotion = None
        max_score = 0
        
        for prediction in normalized_predictions:
            if prediction['score'] > max_score:
                max_score = prediction['score']
                dominant_emotion = prediction['label']
        
        if dominant_emotion is None:
            return "Error: No emotion detected for response generation."
        
        # Create enhanced prompt with language and emotion context
        prompt_text = create_enhanced_prompt(dominant_emotion, user_input, detected_language, max_score)
        response = generate_text(prompt_text)
        
        return response
    
    except Exception as e:
        st.error(f"Error generating AI response: {str(e)}")
        return "I'm sorry, I encountered an error while generating a response."

def display_top_predictions(emotion_predictions, selected_language, num_predictions=3):
    """Display top emotion predictions in sidebar."""
    try:
        # Normalize predictions first
        normalized_predictions = normalize_emotion_predictions(emotion_predictions)
        
        # Sort predictions by score in descending order
        sorted_predictions = sorted(normalized_predictions, key=lambda x: x['score'], reverse=True)
        
        # Take top N predictions
        top_predictions = sorted_predictions[:num_predictions]
        
        # Display in sidebar
        st.sidebar.markdown("---")
        st.sidebar.subheader("🎯 Top Emotion Predictions")
        
        for i, prediction in enumerate(top_predictions, 1):
            emotion = prediction['label']
            score = prediction['score']
            percentage = score * 100
            
            # Create a progress bar for visual representation
            st.sidebar.markdown(f"**{i}. {emotion.title()}**")
            st.sidebar.progress(score)
            st.sidebar.markdown(f"Score: {percentage:.1f}%")
            st.sidebar.markdown("---")
            
    except Exception as e:
        st.sidebar.error(f"Error displaying predictions: {str(e)}")

def display_language_info(detected_language, confidence_scores=None):
    """Display detected language information."""
    language_name = get_language_name(detected_language)
    
    st.sidebar.markdown("---")
    st.sidebar.subheader("🌐 Language Detection")
    st.sidebar.success(f"**Detected:** {language_name} ({detected_language.upper()})")
    
    if confidence_scores:
        st.sidebar.markdown("**Detection Confidence:**")
        for lang, score in confidence_scores.items():
            if lang in SUPPORTED_LANGUAGES:
                lang_name = SUPPORTED_LANGUAGES[lang]
                st.sidebar.markdown(f"β€’ {lang_name}: {score:.2f}")

def main():
    # Sidebar configurations
    st.sidebar.header("βš™οΈ Configuration")
    
    # Language Selection
    selected_language = st.sidebar.selectbox(
        "🌐 Select Interface Language",
        list(LANGUAGES.keys()),
        index=0  # Default to English
    )
    
    # Model Selection
    selected_model_key = st.sidebar.selectbox(
        "πŸ€– Select Emotion Detection Model",
        list(EMOTION_MODELS.keys()),
        format_func=lambda x: EMOTION_MODELS[x],
        index=0  # Default to first model
    )
    
    # Number of predictions to show in sidebar
    num_predictions = st.sidebar.slider(
        "πŸ“Š Number of predictions to show",
        min_value=1,
        max_value=6,
        value=3,
        step=1
    )
    
    # Language detection settings
    auto_detect = True
    
    # Load the selected emotion classifier
    emotion_classifier = load_emotion_classifier(selected_model_key)
    
    # Check if model loaded successfully
    if emotion_classifier is None:
        st.error("Failed to load the selected emotion detection model. Please try again or select a different model.")
        return
    
    # Display selected model info
    st.sidebar.success(f"βœ… Current Model: {EMOTION_MODELS[selected_model_key]}")
    
    # Display Image
    if os.path.exists('chatBot_image.jpg'):
        st.image('chatBot_image.jpg', channels='RGB')
    
    # Set page title and header based on selected language
    st.title(LANGUAGES[selected_language]['title'])
    st.markdown(f"### πŸ’¬ {LANGUAGES[selected_language]['analyze_subtitle']}")
    
    # Add language support info
    st.info("🌍 **Supported Languages:** English, Arabic, French, Spanish, Dutch, Turkish")
    
    # Input Text Box
    user_input = st.text_area(
        LANGUAGES[selected_language]['input_placeholder'],
        "",
        height=100,
        help="Type your message here to analyze emotions and get an emotionally appropriate response"
    )
    
    if user_input:
        try:
            # Language Detection
            if auto_detect:
                detected_language = detect_language(user_input)
            
            # Display language detection results
            display_language_info(detected_language)
            
            # Emotion Detection
            with st.spinner("Analyzing emotions..."):
                emotion_predictions = emotion_classifier(user_input)
            
            # Normalize predictions
            normalized_predictions = normalize_emotion_predictions(emotion_predictions)
            
            # Display top predictions in sidebar
            display_top_predictions(emotion_predictions, selected_language, num_predictions)
            
            # Display Emotions in main area (top 5)
            st.subheader(LANGUAGES[selected_language]['emotions_header'])
            top_5_emotions = sorted(normalized_predictions, key=lambda x: x['score'], reverse=True)[:5]
            
            # Create columns for better display
            col1, col2 = st.columns(2)
            
            for i, prediction in enumerate(top_5_emotions):
                emotion = prediction['label']
                score = prediction['score']
                percentage = score * 100
                
                # Add emotion category indicator
                emotion_category = categorize_emotion(emotion)
                category_emoji = "😊" if emotion_category == "positive" else "πŸ˜”" if emotion_category == "negative" else "😐"
                
                if i % 2 == 0:
                    with col1:
                        st.metric(
                            label=f"{category_emoji} {emotion.title()}",
                            value=f"{percentage:.1f}%",
                            delta=None
                        )
                else:
                    with col2:
                        st.metric(
                            label=f"{category_emoji} {emotion.title()}",
                            value=f"{percentage:.1f}%",
                            delta=None
                        )
            
            # Get AI Response with enhanced emotional intelligence
            with st.spinner("Generating emotionally intelligent response..."):
                ai_response = get_ai_response(user_input, emotion_predictions, detected_language)
            
            # Display AI Response
            st.subheader(f"πŸ€– {LANGUAGES[selected_language]['response_header']}")
            
            # Show dominant emotion and response language
            dominant_emotion = max(normalized_predictions, key=lambda x: x['score'])
            language_name = get_language_name(detected_language)
            
            # Display the response in a nice container
            with st.container():
                st.write(ai_response)
            
            # Add emotion intensity indicator
            emotion_score = dominant_emotion['score']
            intensity = "High" if emotion_score > 0.7 else "Moderate" if emotion_score > 0.4 else "Low"
            st.caption(f"Emotion Intensity: {intensity} ({emotion_score:.2f})")
            
        except Exception as e:
            st.error(f"An error occurred: {str(e)}")
            st.error("Please try again with different input or check your configuration.")

# Run the main function
if __name__ == "__main__":
    main()