File size: 15,586 Bytes
05f57ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import os, time, json, hashlib, glob
import cv2, numpy as np
import torch, gradio as gr
from transformers import AutoProcessor, AutoModelForImageTextToText
# ----------------------------------------------------------------------------------
# Config
# ----------------------------------------------------------------------------------
MODEL_PATH = "AnasKAN/SmolVLM2-500M-Video-Instruct-video-feedback"
PROCESSOR_ID = "HuggingFaceTB/SmolVLM2-500M-Video-Instruct"
# Directories (relative to repo root when running in HF Spaces)
REPO_ROOT = os.path.dirname(__file__)
PRESET_CACHE_DIR = os.path.join(REPO_ROOT, "preset_cache")
PRELOADED_CLEAN_DIR = os.path.join(REPO_ROOT, "assets", "videos_clean")
RUNTIME_CACHE_DIR = "/tmp/moraqeb_cache"
RUNTIME_CLEAN_DIR = "/tmp/clean_videos"
os.makedirs(RUNTIME_CACHE_DIR, exist_ok=True)
os.makedirs(RUNTIME_CLEAN_DIR, exist_ok=True)
# Device / dtype
has_cuda = torch.cuda.is_available()
device = torch.device("cuda" if has_cuda else "cpu")
dtype = torch.bfloat16 if has_cuda else torch.float32
# Video cleaning config (used only for uploaded videos)
target_size = (640, 360) # (w, h)
target_frames = 128
output_fps = 24
fourcc = cv2.VideoWriter_fourcc(*"XVID")
def sample_indices(n_frames_src, n_target):
if n_frames_src <= 0: return []
idxs = np.linspace(0, n_frames_src - 1, min(n_target, n_frames_src), dtype=int)
return idxs.tolist()
def clean_single_video(video_path, save_dir=RUNTIME_CLEAN_DIR, overwrite=True):
os.makedirs(save_dir, exist_ok=True)
base = os.path.splitext(os.path.basename(video_path))[0]
dst_path = os.path.join(save_dir, f"{base}_clean.avi")
if os.path.exists(dst_path) and not overwrite:
print(f"[SKIP] {dst_path} exists")
return dst_path
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"[ERROR] Cannot open {video_path}")
return None
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
idxs = sample_indices(total_frames, target_frames)
frames, grabbed, cur = [], 0, 0
next_targets = set(idxs)
while True:
ret, frame = cap.read()
if not ret: break
if cur in next_targets:
frame = cv2.resize(frame, target_size, interpolation=cv2.INTER_AREA)
frames.append(frame); grabbed += 1
if grabbed == len(idxs): break
cur += 1
cap.release()
if not frames:
print(f"[ERROR] No frames from {video_path}")
return None
while len(frames) < target_frames:
frames.append(frames[-1])
out = cv2.VideoWriter(dst_path, fourcc, output_fps, target_size)
for f in frames: out.write(f)
out.release()
print(f"[OK] Cleaned {video_path} -> {dst_path} ({len(frames)} frames @ {output_fps} FPS)")
return dst_path
# ----------------------------------------------------------------------------------
# Caching helpers
# ----------------------------------------------------------------------------------
def _sha1_file(path, chunk=1024*1024):
h = hashlib.sha1()
with open(path, "rb") as f:
while True:
b = f.read(chunk)
if not b: break
h.update(b)
return h.hexdigest()
def _make_cache_key(cleaned_path, question, gen_kwargs):
vid_hash = _sha1_file(cleaned_path)
payload = {
"model": MODEL_PATH,
"video_hash": vid_hash,
"question": (question or "").strip(),
"gen": {
"do_sample": bool(gen_kwargs.get("do_sample", False)),
"max_new_tokens": int(gen_kwargs.get("max_new_tokens", 128)),
"temperature": float(gen_kwargs.get("temperature", 0.7)) if gen_kwargs.get("do_sample") else None,
"top_p": float(gen_kwargs.get("top_p", 0.9)) if gen_kwargs.get("do_sample") else None,
},
}
raw = json.dumps(payload, sort_keys=True).encode("utf-8")
return hashlib.sha1(raw).hexdigest()
def _cache_path(dir_, key): return os.path.join(dir_, f"{key}.json")
def preset_cache_get(key):
p = _cache_path(PRESET_CACHE_DIR, key)
if os.path.exists(p):
try:
with open(p, "r", encoding="utf-8") as f:
print("[PRESET] HIT", os.path.basename(p))
return json.load(f)
except Exception as e:
print(f"[PRESET] Failed to read {p}: {e}")
return None
def runtime_cache_get(key):
p = _cache_path(RUNTIME_CACHE_DIR, key)
if os.path.exists(p):
try:
with open(p, "r", encoding="utf-8") as f:
print("[CACHE] HIT", os.path.basename(p))
return json.load(f)
except Exception as e:
print(f"[CACHE] Failed to read {p}: {e}")
return None
def runtime_cache_put(key, data):
p = _cache_path(RUNTIME_CACHE_DIR, key)
try:
with open(p, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False)
return True
except Exception as e:
print(f"[CACHE] Failed to write {p}: {e}")
return False
def cache_clear():
n = 0
for fp in glob.glob(os.path.join(RUNTIME_CACHE_DIR, "*.json")):
try: os.remove(fp); n += 1
except: pass
return n
# ----------------------------------------------------------------------------------
# Lazy pipeline (loaded only on cache miss)
# ----------------------------------------------------------------------------------
_model = None
_processor = None
def load_pipeline():
global _model, _processor
if _model is not None and _processor is not None:
print("[INFO] Pipeline already loaded")
return _processor, _model
print(f"[INFO] Loading processor: {PROCESSOR_ID}")
_processor = AutoProcessor.from_pretrained(PROCESSOR_ID)
print(f"[INFO] Loading model: {MODEL_PATH}")
_model = AutoModelForImageTextToText.from_pretrained(
MODEL_PATH,
torch_dtype=dtype,
_attn_implementation="eager",
low_cpu_mem_usage=True,
).to(device).eval()
print("[INFO] Pipeline ready β
")
return _processor, _model
def build_messages(video_path: str, question: str):
q = (question or "").strip() or "Caption the video."
return [{
"role": "user",
"content": [
{"type": "video", "path": video_path},
{"type": "text", "text": q},
],
}]
# ----------------------------------------------------------------------------------
# Inference handlers
# ----------------------------------------------------------------------------------
def _maybe_clean_uploaded(video_path):
if video_path and os.path.commonpath([os.path.abspath(video_path), PRELOADED_CLEAN_DIR]) == PRELOADED_CLEAN_DIR:
print("[INFO] Using preloaded cleaned video:", video_path)
return video_path
print(f"[INFO] Cleaning uploaded video {video_path} ...")
return clean_single_video(video_path, save_dir=RUNTIME_CLEAN_DIR, overwrite=True)
def _infer_core(cleaned_path, question, gen_kwargs, use_cache=True):
key = _make_cache_key(cleaned_path, question, gen_kwargs)
if use_cache:
preset = preset_cache_get(key)
if preset:
return preset["answer"], preset.get("latency_s", 0.0), preset.get("tokens_per_s", 0.0), preset.get("new_tokens", 0)
cached = runtime_cache_get(key)
if cached:
return cached["answer"], cached["latency_s"], cached["tokens_per_s"], cached["new_tokens"]
processor, model = load_pipeline()
print("[INFO] Tokenizing ...")
messages = build_messages(cleaned_path, question)
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
video_load_backend="decord",
).to(device, dtype=dtype)
print(f"[INFO] Generating with {gen_kwargs}")
start = time.time()
with torch.inference_mode():
generated_ids = model.generate(**inputs, **gen_kwargs)
elapsed = time.time() - start
print(f"[INFO] Generation took {elapsed:.2f}s")
raw_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
out_text = raw_text.split("Assistant:", 1)[1].strip() if "Assistant:" in raw_text else raw_text.strip()
new_tokens = int(generated_ids.shape[-1] - inputs["input_ids"].shape[-1])
tps = (new_tokens / elapsed) if elapsed > 0 else 0.0
print(f"[INFO] Decoded {new_tokens} tokens @ {tps:.2f} tok/s")
if use_cache:
runtime_cache_put(key, {
"answer": out_text,
"latency_s": round(elapsed, 3),
"tokens_per_s": round(tps, 2),
"new_tokens": new_tokens,
})
return out_text, round(elapsed, 3), round(tps, 2), new_tokens
# 1) For uploaded videos
def infer_upload(video, question, max_new_tokens, do_sample, temperature, top_p, use_cache):
if video is None:
return "Please upload a video.", 0.0, 0.0, 0
cleaned_path = _maybe_clean_uploaded(video)
if cleaned_path is None:
return "Video cleaning failed.", 0.0, 0.0, 0
gen_kwargs = dict(do_sample=bool(do_sample), max_new_tokens=int(max_new_tokens))
if do_sample:
gen_kwargs.update(temperature=float(temperature), top_p=float(top_p))
return _infer_core(cleaned_path, question, gen_kwargs, use_cache=bool(use_cache))
# 2) For preloaded cleaned videos (no cleaning)
def infer_preloaded(preloaded_name, question, max_new_tokens, do_sample, temperature, top_p, use_cache):
if not preloaded_name:
return "Pick a preloaded video.", 0.0, 0.0, 0
cleaned_path = os.path.join(PRELOADED_CLEAN_DIR, preloaded_name)
if not os.path.exists(cleaned_path):
return f"Video not found: {cleaned_path}", 0.0, 0.0, 0
gen_kwargs = dict(do_sample=bool(do_sample), max_new_tokens=int(max_new_tokens))
if do_sample:
gen_kwargs.update(temperature=float(temperature), top_p=float(top_p))
return _infer_core(cleaned_path, question, gen_kwargs, use_cache=bool(use_cache))
def _ui_clear_cache():
removed = cache_clear()
return gr.update(value=f"Cleared {removed} runtime cached items.")
# ----------------------------------------------------------------------------------
# UI helpers
# ----------------------------------------------------------------------------------
def _list_preloaded_clean():
if not os.path.isdir(PRELOADED_CLEAN_DIR):
return []
exts = (".avi", ".mp4", ".mov", ".mkv")
return [f for f in sorted(os.listdir(PRELOADED_CLEAN_DIR)) if f.lower().endswith(exts)]
def _resolve_preloaded_path(name):
if not name: return None
path = os.path.join(PRELOADED_CLEAN_DIR, name)
return path if os.path.exists(path) else None
# ----------------------------------------------------------------------------------
# UI
# ----------------------------------------------------------------------------------
with gr.Blocks(fill_height=True, theme=gr.themes.Soft()) as demo:
gr.Markdown("# π§ͺ Moraqeb β Distilled VLM Demo")
gr.Markdown(
"Choose a **preloaded cleaned video** (fast, uses preset cache if available) or **upload your own**. "
"On a cache hit, the app returns instantly **without loading the model**."
)
with gr.Tabs():
# --- Preloaded cleaned videos tab ---
with gr.Tab("Preloaded (recommended)"):
with gr.Row():
with gr.Column(scale=1):
preloaded = gr.Dropdown(
choices=_list_preloaded_clean(),
label="Pick a cleaned video (assets/videos_clean/)",
interactive=True
)
# π Video preview that updates when you pick a file
preview = gr.Video(label="Preview", autoplay=False)
# When dropdown changes, update the video preview source to the actual file path
preloaded.change(
fn=_resolve_preloaded_path,
inputs=preloaded,
outputs=preview,
)
with gr.Column(scale=1):
question_pre = gr.Textbox(
label="Question",
value="Can you describe the entire video in detail from start to finish?",
lines=3,
)
max_new_tokens_pre = gr.Slider(8, 512, value=128, step=8, label="Max new tokens")
do_sample_pre = gr.Checkbox(value=False, label="do_sample (enable sampling)")
temperature_pre = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="temperature")
top_p_pre = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="top_p")
use_cache_pre = gr.Checkbox(value=True, label="Use cache")
run_btn_pre = gr.Button("Run on Preloaded Video", variant="primary")
with gr.Row():
answer_pre = gr.Textbox(label="Answer", lines=8)
with gr.Row():
latency_pre = gr.Number(label="Latency (s)")
tps_pre = gr.Number(label="Speed (tokens/sec)")
ntoks_pre = gr.Number(label="New tokens")
# --- Upload tab ---
with gr.Tab("Upload your video"):
with gr.Row():
with gr.Column(scale=1):
video = gr.Video(label="Upload video", sources=["upload"], autoplay=False)
with gr.Column(scale=1):
question = gr.Textbox(
label="Question",
value="Can you describe the entire video in detail from start to finish?",
lines=3,
)
max_new_tokens = gr.Slider(8, 512, value=128, step=8, label="Max new tokens")
do_sample = gr.Checkbox(value=False, label="do_sample (enable sampling)")
temperature = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="temperature")
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="top_p")
use_cache = gr.Checkbox(value=True, label="Use cache")
run_btn = gr.Button("Run Inference", variant="primary")
with gr.Row():
answer = gr.Textbox(label="Answer", lines=8)
with gr.Row():
latency = gr.Number(label="Latency (s)")
tps = gr.Number(label="Speed (tokens/sec)")
ntoks = gr.Number(label="New tokens")
# Cache controls
with gr.Row():
clear_cache_btn = gr.Button("Clear RUNTIME Cache")
clear_cache_status = gr.Textbox(label="Cache status", interactive=False)
# Wiring
run_btn_pre.click(
fn=infer_preloaded,
inputs=[preloaded, question_pre, max_new_tokens_pre, do_sample_pre, temperature_pre, top_p_pre, use_cache_pre],
outputs=[answer_pre, latency_pre, tps_pre, ntoks_pre],
api_name="infer_preloaded",
queue=True,
)
run_btn.click(
fn=infer_upload,
inputs=[video, question, max_new_tokens, do_sample, temperature, top_p, use_cache],
outputs=[answer, latency, tps, ntoks],
api_name="infer_upload",
queue=True,
)
clear_cache_btn.click(_ui_clear_cache, inputs=[], outputs=[clear_cache_status])
gr.Markdown(f"Hardware: **{'CUDA' if has_cuda else 'CPU'}**, dtype **{dtype}**")
if __name__ == "__main__":
demo.launch(server_port=7860, share=True)
|