File size: 15,586 Bytes
05f57ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

import os, time, json, hashlib, glob
import cv2, numpy as np
import torch, gradio as gr
from transformers import AutoProcessor, AutoModelForImageTextToText

# ----------------------------------------------------------------------------------
# Config
# ----------------------------------------------------------------------------------
MODEL_PATH   = "AnasKAN/SmolVLM2-500M-Video-Instruct-video-feedback"
PROCESSOR_ID = "HuggingFaceTB/SmolVLM2-500M-Video-Instruct"

# Directories (relative to repo root when running in HF Spaces)
REPO_ROOT            = os.path.dirname(__file__)
PRESET_CACHE_DIR     = os.path.join(REPO_ROOT, "preset_cache")
PRELOADED_CLEAN_DIR  = os.path.join(REPO_ROOT, "assets", "videos_clean")
RUNTIME_CACHE_DIR    = "/tmp/moraqeb_cache"
RUNTIME_CLEAN_DIR    = "/tmp/clean_videos"

os.makedirs(RUNTIME_CACHE_DIR, exist_ok=True)
os.makedirs(RUNTIME_CLEAN_DIR, exist_ok=True)

# Device / dtype
has_cuda = torch.cuda.is_available()
device   = torch.device("cuda" if has_cuda else "cpu")
dtype    = torch.bfloat16 if has_cuda else torch.float32

# Video cleaning config (used only for uploaded videos)
target_size   = (640, 360)   # (w, h)
target_frames = 128
output_fps    = 24
fourcc        = cv2.VideoWriter_fourcc(*"XVID")

def sample_indices(n_frames_src, n_target):
    if n_frames_src <= 0: return []
    idxs = np.linspace(0, n_frames_src - 1, min(n_target, n_frames_src), dtype=int)
    return idxs.tolist()

def clean_single_video(video_path, save_dir=RUNTIME_CLEAN_DIR, overwrite=True):
    os.makedirs(save_dir, exist_ok=True)
    base = os.path.splitext(os.path.basename(video_path))[0]
    dst_path = os.path.join(save_dir, f"{base}_clean.avi")
    if os.path.exists(dst_path) and not overwrite:
        print(f"[SKIP] {dst_path} exists")
        return dst_path
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        print(f"[ERROR] Cannot open {video_path}")
        return None
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    idxs = sample_indices(total_frames, target_frames)
    frames, grabbed, cur = [], 0, 0
    next_targets = set(idxs)
    while True:
        ret, frame = cap.read()
        if not ret: break
        if cur in next_targets:
            frame = cv2.resize(frame, target_size, interpolation=cv2.INTER_AREA)
            frames.append(frame); grabbed += 1
            if grabbed == len(idxs): break
        cur += 1
    cap.release()
    if not frames:
        print(f"[ERROR] No frames from {video_path}")
        return None
    while len(frames) < target_frames:
        frames.append(frames[-1])
    out = cv2.VideoWriter(dst_path, fourcc, output_fps, target_size)
    for f in frames: out.write(f)
    out.release()
    print(f"[OK] Cleaned {video_path} -> {dst_path} ({len(frames)} frames @ {output_fps} FPS)")
    return dst_path

# ----------------------------------------------------------------------------------
# Caching helpers
# ----------------------------------------------------------------------------------
def _sha1_file(path, chunk=1024*1024):
    h = hashlib.sha1()
    with open(path, "rb") as f:
        while True:
            b = f.read(chunk)
            if not b: break
            h.update(b)
    return h.hexdigest()

def _make_cache_key(cleaned_path, question, gen_kwargs):
    vid_hash = _sha1_file(cleaned_path)
    payload = {
        "model": MODEL_PATH,
        "video_hash": vid_hash,
        "question": (question or "").strip(),
        "gen": {
            "do_sample": bool(gen_kwargs.get("do_sample", False)),
            "max_new_tokens": int(gen_kwargs.get("max_new_tokens", 128)),
            "temperature": float(gen_kwargs.get("temperature", 0.7)) if gen_kwargs.get("do_sample") else None,
            "top_p": float(gen_kwargs.get("top_p", 0.9)) if gen_kwargs.get("do_sample") else None,
        },
    }
    raw = json.dumps(payload, sort_keys=True).encode("utf-8")
    return hashlib.sha1(raw).hexdigest()

def _cache_path(dir_, key): return os.path.join(dir_, f"{key}.json")

def preset_cache_get(key):
    p = _cache_path(PRESET_CACHE_DIR, key)
    if os.path.exists(p):
        try:
            with open(p, "r", encoding="utf-8") as f:
                print("[PRESET] HIT", os.path.basename(p))
                return json.load(f)
        except Exception as e:
            print(f"[PRESET] Failed to read {p}: {e}")
    return None

def runtime_cache_get(key):
    p = _cache_path(RUNTIME_CACHE_DIR, key)
    if os.path.exists(p):
        try:
            with open(p, "r", encoding="utf-8") as f:
                print("[CACHE] HIT", os.path.basename(p))
                return json.load(f)
        except Exception as e:
            print(f"[CACHE] Failed to read {p}: {e}")
    return None

def runtime_cache_put(key, data):
    p = _cache_path(RUNTIME_CACHE_DIR, key)
    try:
        with open(p, "w", encoding="utf-8") as f:
            json.dump(data, f, ensure_ascii=False)
        return True
    except Exception as e:
        print(f"[CACHE] Failed to write {p}: {e}")
        return False

def cache_clear():
    n = 0
    for fp in glob.glob(os.path.join(RUNTIME_CACHE_DIR, "*.json")):
        try: os.remove(fp); n += 1
        except: pass
    return n

# ----------------------------------------------------------------------------------
# Lazy pipeline (loaded only on cache miss)
# ----------------------------------------------------------------------------------
_model = None
_processor = None

def load_pipeline():
    global _model, _processor
    if _model is not None and _processor is not None:
        print("[INFO] Pipeline already loaded")
        return _processor, _model
    print(f"[INFO] Loading processor: {PROCESSOR_ID}")
    _processor = AutoProcessor.from_pretrained(PROCESSOR_ID)
    print(f"[INFO] Loading model: {MODEL_PATH}")
    _model = AutoModelForImageTextToText.from_pretrained(
        MODEL_PATH,
        torch_dtype=dtype,
        _attn_implementation="eager",
        low_cpu_mem_usage=True,
    ).to(device).eval()
    print("[INFO] Pipeline ready βœ…")
    return _processor, _model

def build_messages(video_path: str, question: str):
    q = (question or "").strip() or "Caption the video."
    return [{
        "role": "user",
        "content": [
            {"type": "video", "path": video_path},
            {"type": "text", "text": q},
        ],
    }]

# ----------------------------------------------------------------------------------
# Inference handlers
# ----------------------------------------------------------------------------------
def _maybe_clean_uploaded(video_path):
    if video_path and os.path.commonpath([os.path.abspath(video_path), PRELOADED_CLEAN_DIR]) == PRELOADED_CLEAN_DIR:
        print("[INFO] Using preloaded cleaned video:", video_path)
        return video_path
    print(f"[INFO] Cleaning uploaded video {video_path} ...")
    return clean_single_video(video_path, save_dir=RUNTIME_CLEAN_DIR, overwrite=True)

def _infer_core(cleaned_path, question, gen_kwargs, use_cache=True):
    key = _make_cache_key(cleaned_path, question, gen_kwargs)

    if use_cache:
        preset = preset_cache_get(key)
        if preset:
            return preset["answer"], preset.get("latency_s", 0.0), preset.get("tokens_per_s", 0.0), preset.get("new_tokens", 0)
        cached = runtime_cache_get(key)
        if cached:
            return cached["answer"], cached["latency_s"], cached["tokens_per_s"], cached["new_tokens"]

    processor, model = load_pipeline()
    print("[INFO] Tokenizing ...")
    messages = build_messages(cleaned_path, question)
    inputs = processor.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt",
        video_load_backend="decord",
    ).to(device, dtype=dtype)

    print(f"[INFO] Generating with {gen_kwargs}")
    start = time.time()
    with torch.inference_mode():
        generated_ids = model.generate(**inputs, **gen_kwargs)
    elapsed = time.time() - start
    print(f"[INFO] Generation took {elapsed:.2f}s")

    raw_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
    out_text = raw_text.split("Assistant:", 1)[1].strip() if "Assistant:" in raw_text else raw_text.strip()

    new_tokens = int(generated_ids.shape[-1] - inputs["input_ids"].shape[-1])
    tps = (new_tokens / elapsed) if elapsed > 0 else 0.0
    print(f"[INFO] Decoded {new_tokens} tokens @ {tps:.2f} tok/s")

    if use_cache:
        runtime_cache_put(key, {
            "answer": out_text,
            "latency_s": round(elapsed, 3),
            "tokens_per_s": round(tps, 2),
            "new_tokens": new_tokens,
        })
    return out_text, round(elapsed, 3), round(tps, 2), new_tokens

# 1) For uploaded videos
def infer_upload(video, question, max_new_tokens, do_sample, temperature, top_p, use_cache):
    if video is None:
        return "Please upload a video.", 0.0, 0.0, 0
    cleaned_path = _maybe_clean_uploaded(video)
    if cleaned_path is None:
        return "Video cleaning failed.", 0.0, 0.0, 0
    gen_kwargs = dict(do_sample=bool(do_sample), max_new_tokens=int(max_new_tokens))
    if do_sample:
        gen_kwargs.update(temperature=float(temperature), top_p=float(top_p))
    return _infer_core(cleaned_path, question, gen_kwargs, use_cache=bool(use_cache))

# 2) For preloaded cleaned videos (no cleaning)
def infer_preloaded(preloaded_name, question, max_new_tokens, do_sample, temperature, top_p, use_cache):
    if not preloaded_name:
        return "Pick a preloaded video.", 0.0, 0.0, 0
    cleaned_path = os.path.join(PRELOADED_CLEAN_DIR, preloaded_name)
    if not os.path.exists(cleaned_path):
        return f"Video not found: {cleaned_path}", 0.0, 0.0, 0
    gen_kwargs = dict(do_sample=bool(do_sample), max_new_tokens=int(max_new_tokens))
    if do_sample:
        gen_kwargs.update(temperature=float(temperature), top_p=float(top_p))
    return _infer_core(cleaned_path, question, gen_kwargs, use_cache=bool(use_cache))

def _ui_clear_cache():
    removed = cache_clear()
    return gr.update(value=f"Cleared {removed} runtime cached items.")

# ----------------------------------------------------------------------------------
# UI helpers
# ----------------------------------------------------------------------------------
def _list_preloaded_clean():
    if not os.path.isdir(PRELOADED_CLEAN_DIR):
        return []
    exts = (".avi", ".mp4", ".mov", ".mkv")
    return [f for f in sorted(os.listdir(PRELOADED_CLEAN_DIR)) if f.lower().endswith(exts)]

def _resolve_preloaded_path(name):
    if not name: return None
    path = os.path.join(PRELOADED_CLEAN_DIR, name)
    return path if os.path.exists(path) else None

# ----------------------------------------------------------------------------------
# UI
# ----------------------------------------------------------------------------------
with gr.Blocks(fill_height=True, theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸ§ͺ Moraqeb β€” Distilled VLM Demo")
    gr.Markdown(
        "Choose a **preloaded cleaned video** (fast, uses preset cache if available) or **upload your own**. "
        "On a cache hit, the app returns instantly **without loading the model**."
    )

    with gr.Tabs():
        # --- Preloaded cleaned videos tab ---
        with gr.Tab("Preloaded (recommended)"):
            with gr.Row():
                with gr.Column(scale=1):
                    preloaded = gr.Dropdown(
                        choices=_list_preloaded_clean(),
                        label="Pick a cleaned video (assets/videos_clean/)",
                        interactive=True
                    )
                    # πŸ‘‡ Video preview that updates when you pick a file
                    preview = gr.Video(label="Preview", autoplay=False)

                    # When dropdown changes, update the video preview source to the actual file path
                    preloaded.change(
                        fn=_resolve_preloaded_path,
                        inputs=preloaded,
                        outputs=preview,
                    )
                with gr.Column(scale=1):
                    question_pre = gr.Textbox(
                        label="Question",
                        value="Can you describe the entire video in detail from start to finish?",
                        lines=3,
                    )
                    max_new_tokens_pre = gr.Slider(8, 512, value=128, step=8, label="Max new tokens")
                    do_sample_pre = gr.Checkbox(value=False, label="do_sample (enable sampling)")
                    temperature_pre = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="temperature")
                    top_p_pre = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="top_p")
                    use_cache_pre = gr.Checkbox(value=True, label="Use cache")
                    run_btn_pre = gr.Button("Run on Preloaded Video", variant="primary")

            with gr.Row():
                answer_pre = gr.Textbox(label="Answer", lines=8)
            with gr.Row():
                latency_pre = gr.Number(label="Latency (s)")
                tps_pre     = gr.Number(label="Speed (tokens/sec)")
                ntoks_pre   = gr.Number(label="New tokens")

        # --- Upload tab ---
        with gr.Tab("Upload your video"):
            with gr.Row():
                with gr.Column(scale=1):
                    video = gr.Video(label="Upload video", sources=["upload"], autoplay=False)
                with gr.Column(scale=1):
                    question = gr.Textbox(
                        label="Question",
                        value="Can you describe the entire video in detail from start to finish?",
                        lines=3,
                    )
                    max_new_tokens = gr.Slider(8, 512, value=128, step=8, label="Max new tokens")
                    do_sample = gr.Checkbox(value=False, label="do_sample (enable sampling)")
                    temperature = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="temperature")
                    top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="top_p")
                    use_cache = gr.Checkbox(value=True, label="Use cache")
                    run_btn = gr.Button("Run Inference", variant="primary")

            with gr.Row():
                answer = gr.Textbox(label="Answer", lines=8)
            with gr.Row():
                latency = gr.Number(label="Latency (s)")
                tps     = gr.Number(label="Speed (tokens/sec)")
                ntoks   = gr.Number(label="New tokens")

        # Cache controls
        with gr.Row():
            clear_cache_btn = gr.Button("Clear RUNTIME Cache")
            clear_cache_status = gr.Textbox(label="Cache status", interactive=False)

    # Wiring
    run_btn_pre.click(
        fn=infer_preloaded,
        inputs=[preloaded, question_pre, max_new_tokens_pre, do_sample_pre, temperature_pre, top_p_pre, use_cache_pre],
        outputs=[answer_pre, latency_pre, tps_pre, ntoks_pre],
        api_name="infer_preloaded",
        queue=True,
    )

    run_btn.click(
        fn=infer_upload,
        inputs=[video, question, max_new_tokens, do_sample, temperature, top_p, use_cache],
        outputs=[answer, latency, tps, ntoks],
        api_name="infer_upload",
        queue=True,
    )

    clear_cache_btn.click(_ui_clear_cache, inputs=[], outputs=[clear_cache_status])
    gr.Markdown(f"Hardware: **{'CUDA' if has_cuda else 'CPU'}**, dtype **{dtype}**")

if __name__ == "__main__":
    demo.launch(server_port=7860, share=True)