Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from torch import nn | |
from einops import rearrange | |
from PIL import Image | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import requests | |
import os | |
import sys | |
import warnings | |
# Silenciar aviso depreciação do timm visto no HF Spaces | |
warnings.filterwarnings( | |
"ignore", | |
message="Importing from timm.models.layers is deprecated, please import via timm.layers", | |
category=FutureWarning, | |
) | |
# Garantir import local do pacote `surya` mesmo se CWD for diferente | |
sys.path.append(os.path.dirname(__file__)) | |
# ================================ | |
# 1. Baixar pesos do Surya-1.0 | |
# ================================ | |
MODEL_URL = "https://huggingface.co/nasa-ibm-ai4science/Surya-1.0/resolve/main/surya.366m.v1.pt" | |
# Preferir checkpoint local se existir | |
MODEL_CANDIDATES = [ | |
os.path.join(os.path.dirname(__file__), "surya_model.pt"), | |
os.path.join(os.path.dirname(__file__), "surya.366m.v1.pt"), | |
] | |
def _pick_model_file(): | |
for p in MODEL_CANDIDATES: | |
if os.path.exists(p): | |
return p | |
return MODEL_CANDIDATES[-1] | |
MODEL_FILE = _pick_model_file() | |
def download_model(): | |
if not os.path.exists(MODEL_FILE): | |
print("Baixando pesos do Surya-1.0...") | |
r = requests.get(MODEL_URL) | |
with open(MODEL_FILE, "wb") as f: | |
f.write(r.content) | |
print("Download concluído!") | |
download_model() | |
# ================================ | |
# 2. Colar aqui a classe HelioSpectFormer | |
# ================================ | |
# Copie todo o conteúdo que você me enviou da HelioSpectFormer aqui | |
# ⚠️ Substitua a seção abaixo pelo código real do repo | |
from surya.models.helio_spectformer import HelioSpectFormer | |
# se você tiver a pasta surya local | |
# ================================ | |
# 3. Instanciar o modelo com parâmetros padrão | |
# ================================ | |
model = HelioSpectFormer( | |
img_size=224, | |
patch_size=16, | |
in_chans=1, | |
embed_dim=368, | |
time_embedding={"type": "linear", "time_dim": 1}, | |
depth=8, | |
n_spectral_blocks=4, | |
num_heads=8, | |
mlp_ratio=4.0, | |
drop_rate=0.0, | |
window_size=7, | |
dp_rank=1, | |
learned_flow=False, | |
finetune=True | |
) | |
# Carregar pesos de forma resiliente (strict=False) e logar diferenças | |
def _try_load_weights(m: nn.Module, path: str) -> None: | |
if os.environ.get("NO_WEIGHTS", "").lower() in {"1", "true", "yes"}: | |
print("NO_WEIGHTS=1 -> pulando carregamento de pesos") | |
return | |
try: | |
raw_sd = torch.load(path, map_location=torch.device('cpu')) | |
model_sd = m.state_dict() | |
filtered = {} | |
dropped = [] | |
for k, v in raw_sd.items(): | |
if k in model_sd and model_sd[k].shape == v.shape: | |
filtered[k] = v | |
else: | |
dropped.append((k, tuple(v.shape) if hasattr(v, 'shape') else None, tuple(model_sd.get(k, torch.tensor(())).shape) if k in model_sd else None)) | |
missing, unexpected = m.load_state_dict(filtered, strict=False) | |
print(f"Pesos carregados parcialmente. Ok={len(filtered)} Missing={len(missing)} Unexpected={len(unexpected)} Dropped={len(dropped)}") | |
if dropped: | |
print("Algumas chaves foram descartadas por mismatch (ex.:)", dropped[:5]) | |
if missing: | |
print("Exemplos de missing:", missing[:10]) | |
if unexpected: | |
print("Exemplos de unexpected:", unexpected[:10]) | |
except Exception as e: | |
print(f"Falha ao carregar pesos de {path}: {e}") | |
_try_load_weights(model, MODEL_FILE) | |
model.eval() | |
# ================================ | |
# 4. Função de inferência para heatmap | |
# ================================ | |
def infer_solar_image_heatmap(img): | |
# Pré-processamento da imagem | |
img_gray = img.convert("L").resize((224, 224)) | |
img_np = np.array(img_gray) | |
ts_tensor = ( | |
torch.tensor(img_np, dtype=torch.float32) | |
.unsqueeze(0) | |
.unsqueeze(0) | |
.unsqueeze(2) | |
/ 255.0 | |
) # [B=1,C=1,T=1,H=224,W=224] | |
batch = {"ts": ts_tensor, "time_delta_input": torch.zeros((1, 1))} | |
# Inferência (retorna tokens [1, L, D] com finetune=True) | |
with torch.no_grad(): | |
tokens = model(batch).squeeze(0).cpu() # [L, D] | |
# Remover o componente estático de posição para evitar mapa "igual" entre imagens | |
try: | |
pos = model.embedding.pos_embed.squeeze(0).to(tokens.dtype).cpu() # [L, D] | |
if pos.shape == tokens.shape: | |
tokens = tokens - pos | |
except Exception: | |
pass | |
# Agregar energia por patch (L2) e remontar 14x14 | |
L, D = tokens.shape | |
side = int(L ** 0.5) # 14 para 224/16 | |
heat_vec = torch.sqrt((tokens**2).mean(dim=1)) # [L] | |
heat = heat_vec.reshape(side, side).numpy() | |
# Normalizar e upsample p/ 224x224 (nearest para simplicidade) | |
heat = (heat - heat.min()) / (heat.max() - heat.min() + 1e-8) | |
heat224 = np.kron(heat, np.ones((224 // side, 224 // side))) | |
# Overlay sobre a imagem original | |
plt.figure(figsize=(5, 5)) | |
plt.imshow(img_np, cmap="gray") | |
plt.imshow(heat224, cmap="inferno", alpha=0.5, vmin=0.0, vmax=1.0) | |
plt.axis("off") | |
plt.tight_layout() | |
return plt.gcf() | |
# ================================ | |
# 5. Interface Gradio | |
# ================================ | |
interface = gr.Interface( | |
fn=infer_solar_image_heatmap, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Plot(label="Heatmap do embedding Surya"), | |
title="Playground Surya-1.0 com Heatmap", | |
description="Upload de imagem solar → visualize heatmap gerado pelo Surya-1.0" | |
) | |
interface.launch() | |