Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import tempfile | |
import unittest | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from huggingface_hub.repocard import RepoCard | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
EulerDiscreteScheduler, | |
StableDiffusionPipeline, | |
StableDiffusionXLPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin, PatchedLoraProjection, text_encoder_attn_modules | |
from diffusers.models.attention_processor import ( | |
Attention, | |
AttnProcessor, | |
AttnProcessor2_0, | |
LoRAAttnProcessor, | |
LoRAAttnProcessor2_0, | |
LoRAXFormersAttnProcessor, | |
XFormersAttnProcessor, | |
) | |
from diffusers.utils import floats_tensor, torch_device | |
from diffusers.utils.testing_utils import require_torch_gpu, slow | |
def create_unet_lora_layers(unet: nn.Module): | |
lora_attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
lora_attn_processor_class = ( | |
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor | |
) | |
lora_attn_procs[name] = lora_attn_processor_class( | |
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim | |
) | |
unet_lora_layers = AttnProcsLayers(lora_attn_procs) | |
return lora_attn_procs, unet_lora_layers | |
def create_text_encoder_lora_attn_procs(text_encoder: nn.Module): | |
text_lora_attn_procs = {} | |
lora_attn_processor_class = ( | |
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor | |
) | |
for name, module in text_encoder_attn_modules(text_encoder): | |
if isinstance(module.out_proj, nn.Linear): | |
out_features = module.out_proj.out_features | |
elif isinstance(module.out_proj, PatchedLoraProjection): | |
out_features = module.out_proj.regular_linear_layer.out_features | |
else: | |
assert False, module.out_proj.__class__ | |
text_lora_attn_procs[name] = lora_attn_processor_class(hidden_size=out_features, cross_attention_dim=None) | |
return text_lora_attn_procs | |
def create_text_encoder_lora_layers(text_encoder: nn.Module): | |
text_lora_attn_procs = create_text_encoder_lora_attn_procs(text_encoder) | |
text_encoder_lora_layers = AttnProcsLayers(text_lora_attn_procs) | |
return text_encoder_lora_layers | |
def set_lora_weights(lora_attn_parameters, randn_weight=False): | |
with torch.no_grad(): | |
for parameter in lora_attn_parameters: | |
if randn_weight: | |
parameter[:] = torch.randn_like(parameter) | |
else: | |
torch.zero_(parameter) | |
class LoraLoaderMixinTests(unittest.TestCase): | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
) | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet) | |
text_encoder_lora_layers = create_text_encoder_lora_layers(text_encoder) | |
pipeline_components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
} | |
lora_components = { | |
"unet_lora_layers": unet_lora_layers, | |
"text_encoder_lora_layers": text_encoder_lora_layers, | |
"unet_lora_attn_procs": unet_lora_attn_procs, | |
} | |
return pipeline_components, lora_components | |
def get_dummy_inputs(self, with_generator=True): | |
batch_size = 1 | |
sequence_length = 10 | |
num_channels = 4 | |
sizes = (32, 32) | |
generator = torch.manual_seed(0) | |
noise = floats_tensor((batch_size, num_channels) + sizes) | |
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) | |
pipeline_inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "np", | |
} | |
if with_generator: | |
pipeline_inputs.update({"generator": generator}) | |
return noise, input_ids, pipeline_inputs | |
# copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb | |
def get_dummy_tokens(self): | |
max_seq_length = 77 | |
inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0)) | |
prepared_inputs = {} | |
prepared_inputs["input_ids"] = inputs | |
return prepared_inputs | |
def create_lora_weight_file(self, tmpdirname): | |
_, lora_components = self.get_dummy_components() | |
LoraLoaderMixin.save_lora_weights( | |
save_directory=tmpdirname, | |
unet_lora_layers=lora_components["unet_lora_layers"], | |
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"], | |
) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
def test_lora_save_load(self): | |
pipeline_components, lora_components = self.get_dummy_components() | |
sd_pipe = StableDiffusionPipeline(**pipeline_components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
_, _, pipeline_inputs = self.get_dummy_inputs() | |
original_images = sd_pipe(**pipeline_inputs).images | |
orig_image_slice = original_images[0, -3:, -3:, -1] | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
LoraLoaderMixin.save_lora_weights( | |
save_directory=tmpdirname, | |
unet_lora_layers=lora_components["unet_lora_layers"], | |
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"], | |
) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
sd_pipe.load_lora_weights(tmpdirname) | |
lora_images = sd_pipe(**pipeline_inputs).images | |
lora_image_slice = lora_images[0, -3:, -3:, -1] | |
# Outputs shouldn't match. | |
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice))) | |
def test_lora_save_load_safetensors(self): | |
pipeline_components, lora_components = self.get_dummy_components() | |
sd_pipe = StableDiffusionPipeline(**pipeline_components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
_, _, pipeline_inputs = self.get_dummy_inputs() | |
original_images = sd_pipe(**pipeline_inputs).images | |
orig_image_slice = original_images[0, -3:, -3:, -1] | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
LoraLoaderMixin.save_lora_weights( | |
save_directory=tmpdirname, | |
unet_lora_layers=lora_components["unet_lora_layers"], | |
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"], | |
safe_serialization=True, | |
) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))) | |
sd_pipe.load_lora_weights(tmpdirname) | |
lora_images = sd_pipe(**pipeline_inputs).images | |
lora_image_slice = lora_images[0, -3:, -3:, -1] | |
# Outputs shouldn't match. | |
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice))) | |
def test_lora_save_load_legacy(self): | |
pipeline_components, lora_components = self.get_dummy_components() | |
unet_lora_attn_procs = lora_components["unet_lora_attn_procs"] | |
sd_pipe = StableDiffusionPipeline(**pipeline_components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
_, _, pipeline_inputs = self.get_dummy_inputs() | |
original_images = sd_pipe(**pipeline_inputs).images | |
orig_image_slice = original_images[0, -3:, -3:, -1] | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
unet = sd_pipe.unet | |
unet.set_attn_processor(unet_lora_attn_procs) | |
unet.save_attn_procs(tmpdirname) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
sd_pipe.load_lora_weights(tmpdirname) | |
lora_images = sd_pipe(**pipeline_inputs).images | |
lora_image_slice = lora_images[0, -3:, -3:, -1] | |
# Outputs shouldn't match. | |
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice))) | |
def test_text_encoder_lora_monkey_patch(self): | |
pipeline_components, _ = self.get_dummy_components() | |
pipe = StableDiffusionPipeline(**pipeline_components) | |
dummy_tokens = self.get_dummy_tokens() | |
# inference without lora | |
outputs_without_lora = pipe.text_encoder(**dummy_tokens)[0] | |
assert outputs_without_lora.shape == (1, 77, 32) | |
# monkey patch | |
params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale) | |
set_lora_weights(params, randn_weight=False) | |
# inference with lora | |
outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0] | |
assert outputs_with_lora.shape == (1, 77, 32) | |
assert torch.allclose( | |
outputs_without_lora, outputs_with_lora | |
), "lora_up_weight are all zero, so the lora outputs should be the same to without lora outputs" | |
# create lora_attn_procs with randn up.weights | |
create_text_encoder_lora_attn_procs(pipe.text_encoder) | |
# monkey patch | |
params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale) | |
set_lora_weights(params, randn_weight=True) | |
# inference with lora | |
outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0] | |
assert outputs_with_lora.shape == (1, 77, 32) | |
assert not torch.allclose( | |
outputs_without_lora, outputs_with_lora | |
), "lora_up_weight are not zero, so the lora outputs should be different to without lora outputs" | |
def test_text_encoder_lora_remove_monkey_patch(self): | |
pipeline_components, _ = self.get_dummy_components() | |
pipe = StableDiffusionPipeline(**pipeline_components) | |
dummy_tokens = self.get_dummy_tokens() | |
# inference without lora | |
outputs_without_lora = pipe.text_encoder(**dummy_tokens)[0] | |
assert outputs_without_lora.shape == (1, 77, 32) | |
# monkey patch | |
params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale) | |
set_lora_weights(params, randn_weight=True) | |
# inference with lora | |
outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0] | |
assert outputs_with_lora.shape == (1, 77, 32) | |
assert not torch.allclose( | |
outputs_without_lora, outputs_with_lora | |
), "lora outputs should be different to without lora outputs" | |
# remove monkey patch | |
pipe._remove_text_encoder_monkey_patch() | |
# inference with removed lora | |
outputs_without_lora_removed = pipe.text_encoder(**dummy_tokens)[0] | |
assert outputs_without_lora_removed.shape == (1, 77, 32) | |
assert torch.allclose( | |
outputs_without_lora, outputs_without_lora_removed | |
), "remove lora monkey patch should restore the original outputs" | |
def test_text_encoder_lora_scale(self): | |
pipeline_components, lora_components = self.get_dummy_components() | |
sd_pipe = StableDiffusionPipeline(**pipeline_components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
_, _, pipeline_inputs = self.get_dummy_inputs() | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
LoraLoaderMixin.save_lora_weights( | |
save_directory=tmpdirname, | |
unet_lora_layers=lora_components["unet_lora_layers"], | |
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"], | |
) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
sd_pipe.load_lora_weights(tmpdirname) | |
lora_images = sd_pipe(**pipeline_inputs).images | |
lora_image_slice = lora_images[0, -3:, -3:, -1] | |
lora_images_with_scale = sd_pipe(**pipeline_inputs, cross_attention_kwargs={"scale": 0.5}).images | |
lora_image_with_scale_slice = lora_images_with_scale[0, -3:, -3:, -1] | |
# Outputs shouldn't match. | |
self.assertFalse( | |
torch.allclose(torch.from_numpy(lora_image_slice), torch.from_numpy(lora_image_with_scale_slice)) | |
) | |
def test_lora_unet_attn_processors(self): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
self.create_lora_weight_file(tmpdirname) | |
pipeline_components, _ = self.get_dummy_components() | |
sd_pipe = StableDiffusionPipeline(**pipeline_components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
# check if vanilla attention processors are used | |
for _, module in sd_pipe.unet.named_modules(): | |
if isinstance(module, Attention): | |
self.assertIsInstance(module.processor, (AttnProcessor, AttnProcessor2_0)) | |
# load LoRA weight file | |
sd_pipe.load_lora_weights(tmpdirname) | |
# check if lora attention processors are used | |
for _, module in sd_pipe.unet.named_modules(): | |
if isinstance(module, Attention): | |
attn_proc_class = ( | |
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor | |
) | |
self.assertIsInstance(module.processor, attn_proc_class) | |
def test_unload_lora_sd(self): | |
pipeline_components, lora_components = self.get_dummy_components() | |
_, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False) | |
sd_pipe = StableDiffusionPipeline(**pipeline_components) | |
original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images | |
orig_image_slice = original_images[0, -3:, -3:, -1] | |
# Emulate training. | |
set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True) | |
set_lora_weights(lora_components["text_encoder_lora_layers"].parameters(), randn_weight=True) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
LoraLoaderMixin.save_lora_weights( | |
save_directory=tmpdirname, | |
unet_lora_layers=lora_components["unet_lora_layers"], | |
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"], | |
) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
sd_pipe.load_lora_weights(tmpdirname) | |
lora_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images | |
lora_image_slice = lora_images[0, -3:, -3:, -1] | |
# Unload LoRA parameters. | |
sd_pipe.unload_lora_weights() | |
original_images_two = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images | |
orig_image_slice_two = original_images_two[0, -3:, -3:, -1] | |
assert not np.allclose( | |
orig_image_slice, lora_image_slice | |
), "LoRA parameters should lead to a different image slice." | |
assert not np.allclose( | |
orig_image_slice_two, lora_image_slice | |
), "LoRA parameters should lead to a different image slice." | |
assert np.allclose( | |
orig_image_slice, orig_image_slice_two, atol=1e-3 | |
), "Unloading LoRA parameters should lead to results similar to what was obtained with the pipeline without any LoRA parameters." | |
def test_lora_unet_attn_processors_with_xformers(self): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
self.create_lora_weight_file(tmpdirname) | |
pipeline_components, _ = self.get_dummy_components() | |
sd_pipe = StableDiffusionPipeline(**pipeline_components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
# enable XFormers | |
sd_pipe.enable_xformers_memory_efficient_attention() | |
# check if xFormers attention processors are used | |
for _, module in sd_pipe.unet.named_modules(): | |
if isinstance(module, Attention): | |
self.assertIsInstance(module.processor, XFormersAttnProcessor) | |
# load LoRA weight file | |
sd_pipe.load_lora_weights(tmpdirname) | |
# check if lora attention processors are used | |
for _, module in sd_pipe.unet.named_modules(): | |
if isinstance(module, Attention): | |
self.assertIsInstance(module.processor, LoRAXFormersAttnProcessor) | |
# unload lora weights | |
sd_pipe.unload_lora_weights() | |
# check if attention processors are reverted back to xFormers | |
for _, module in sd_pipe.unet.named_modules(): | |
if isinstance(module, Attention): | |
self.assertIsInstance(module.processor, XFormersAttnProcessor) | |
def test_lora_save_load_with_xformers(self): | |
pipeline_components, lora_components = self.get_dummy_components() | |
sd_pipe = StableDiffusionPipeline(**pipeline_components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
_, _, pipeline_inputs = self.get_dummy_inputs() | |
# enable XFormers | |
sd_pipe.enable_xformers_memory_efficient_attention() | |
original_images = sd_pipe(**pipeline_inputs).images | |
orig_image_slice = original_images[0, -3:, -3:, -1] | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
LoraLoaderMixin.save_lora_weights( | |
save_directory=tmpdirname, | |
unet_lora_layers=lora_components["unet_lora_layers"], | |
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"], | |
) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
sd_pipe.load_lora_weights(tmpdirname) | |
lora_images = sd_pipe(**pipeline_inputs).images | |
lora_image_slice = lora_images[0, -3:, -3:, -1] | |
# Outputs shouldn't match. | |
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice))) | |
class SDXLLoraLoaderMixinTests(unittest.TestCase): | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
cross_attention_dim=64, | |
) | |
scheduler = EulerDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
steps_offset=1, | |
beta_schedule="scaled_linear", | |
timestep_spacing="leading", | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
sample_size=128, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
# SD2-specific config below | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet) | |
text_encoder_one_lora_layers = create_text_encoder_lora_layers(text_encoder) | |
text_encoder_two_lora_layers = create_text_encoder_lora_layers(text_encoder_2) | |
pipeline_components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer": tokenizer, | |
"tokenizer_2": tokenizer_2, | |
} | |
lora_components = { | |
"unet_lora_layers": unet_lora_layers, | |
"text_encoder_one_lora_layers": text_encoder_one_lora_layers, | |
"text_encoder_two_lora_layers": text_encoder_two_lora_layers, | |
"unet_lora_attn_procs": unet_lora_attn_procs, | |
} | |
return pipeline_components, lora_components | |
def get_dummy_inputs(self, with_generator=True): | |
batch_size = 1 | |
sequence_length = 10 | |
num_channels = 4 | |
sizes = (32, 32) | |
generator = torch.manual_seed(0) | |
noise = floats_tensor((batch_size, num_channels) + sizes) | |
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) | |
pipeline_inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "np", | |
} | |
if with_generator: | |
pipeline_inputs.update({"generator": generator}) | |
return noise, input_ids, pipeline_inputs | |
def test_lora_save_load(self): | |
pipeline_components, lora_components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLPipeline(**pipeline_components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
_, _, pipeline_inputs = self.get_dummy_inputs() | |
original_images = sd_pipe(**pipeline_inputs).images | |
orig_image_slice = original_images[0, -3:, -3:, -1] | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
StableDiffusionXLPipeline.save_lora_weights( | |
save_directory=tmpdirname, | |
unet_lora_layers=lora_components["unet_lora_layers"], | |
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"], | |
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"], | |
) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
sd_pipe.load_lora_weights(tmpdirname) | |
lora_images = sd_pipe(**pipeline_inputs).images | |
lora_image_slice = lora_images[0, -3:, -3:, -1] | |
# Outputs shouldn't match. | |
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice))) | |
def test_unload_lora_sdxl(self): | |
pipeline_components, lora_components = self.get_dummy_components() | |
_, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False) | |
sd_pipe = StableDiffusionXLPipeline(**pipeline_components) | |
original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images | |
orig_image_slice = original_images[0, -3:, -3:, -1] | |
# Emulate training. | |
set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True) | |
set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True) | |
set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
StableDiffusionXLPipeline.save_lora_weights( | |
save_directory=tmpdirname, | |
unet_lora_layers=lora_components["unet_lora_layers"], | |
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"], | |
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"], | |
) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
sd_pipe.load_lora_weights(tmpdirname) | |
lora_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images | |
lora_image_slice = lora_images[0, -3:, -3:, -1] | |
# Unload LoRA parameters. | |
sd_pipe.unload_lora_weights() | |
original_images_two = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images | |
orig_image_slice_two = original_images_two[0, -3:, -3:, -1] | |
assert not np.allclose( | |
orig_image_slice, lora_image_slice | |
), "LoRA parameters should lead to a different image slice." | |
assert not np.allclose( | |
orig_image_slice_two, lora_image_slice | |
), "LoRA parameters should lead to a different image slice." | |
assert np.allclose( | |
orig_image_slice, orig_image_slice_two, atol=1e-3 | |
), "Unloading LoRA parameters should lead to results similar to what was obtained with the pipeline without any LoRA parameters." | |
class LoraIntegrationTests(unittest.TestCase): | |
def test_dreambooth_old_format(self): | |
generator = torch.Generator("cpu").manual_seed(0) | |
lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example" | |
card = RepoCard.load(lora_model_id) | |
base_model_id = card.data.to_dict()["base_model"] | |
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) | |
pipe = pipe.to(torch_device) | |
pipe.load_lora_weights(lora_model_id) | |
images = pipe( | |
"A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2 | |
).images | |
images = images[0, -3:, -3:, -1].flatten() | |
expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785]) | |
self.assertTrue(np.allclose(images, expected, atol=1e-4)) | |
def test_dreambooth_text_encoder_new_format(self): | |
generator = torch.Generator().manual_seed(0) | |
lora_model_id = "hf-internal-testing/lora-trained" | |
card = RepoCard.load(lora_model_id) | |
base_model_id = card.data.to_dict()["base_model"] | |
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) | |
pipe = pipe.to(torch_device) | |
pipe.load_lora_weights(lora_model_id) | |
images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images | |
images = images[0, -3:, -3:, -1].flatten() | |
expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359]) | |
self.assertTrue(np.allclose(images, expected, atol=1e-4)) | |
def test_a1111(self): | |
generator = torch.Generator().manual_seed(0) | |
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to( | |
torch_device | |
) | |
lora_model_id = "hf-internal-testing/civitai-light-shadow-lora" | |
lora_filename = "light_and_shadow.safetensors" | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
images = pipe( | |
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
).images | |
images = images[0, -3:, -3:, -1].flatten() | |
expected = np.array([0.3725, 0.3767, 0.3761, 0.3796, 0.3827, 0.3763, 0.3831, 0.3809, 0.3392]) | |
self.assertTrue(np.allclose(images, expected, atol=1e-4)) | |
def test_vanilla_funetuning(self): | |
generator = torch.Generator().manual_seed(0) | |
lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4" | |
card = RepoCard.load(lora_model_id) | |
base_model_id = card.data.to_dict()["base_model"] | |
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) | |
pipe = pipe.to(torch_device) | |
pipe.load_lora_weights(lora_model_id) | |
images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images | |
images = images[0, -3:, -3:, -1].flatten() | |
expected = np.array([0.7406, 0.699, 0.5963, 0.7493, 0.7045, 0.6096, 0.6886, 0.6388, 0.583]) | |
self.assertTrue(np.allclose(images, expected, atol=1e-4)) | |
def test_unload_lora(self): | |
generator = torch.manual_seed(0) | |
prompt = "masterpiece, best quality, mountain" | |
num_inference_steps = 2 | |
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( | |
torch_device | |
) | |
initial_images = pipe( | |
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps | |
).images | |
initial_images = initial_images[0, -3:, -3:, -1].flatten() | |
lora_model_id = "hf-internal-testing/civitai-colored-icons-lora" | |
lora_filename = "Colored_Icons_by_vizsumit.safetensors" | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
generator = torch.manual_seed(0) | |
lora_images = pipe( | |
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps | |
).images | |
lora_images = lora_images[0, -3:, -3:, -1].flatten() | |
pipe.unload_lora_weights() | |
generator = torch.manual_seed(0) | |
unloaded_lora_images = pipe( | |
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps | |
).images | |
unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten() | |
self.assertFalse(np.allclose(initial_images, lora_images)) | |
self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3)) | |
def test_load_unload_load_kohya_lora(self): | |
# This test ensures that a Kohya-style LoRA can be safely unloaded and then loaded | |
# without introducing any side-effects. Even though the test uses a Kohya-style | |
# LoRA, the underlying adapter handling mechanism is format-agnostic. | |
generator = torch.manual_seed(0) | |
prompt = "masterpiece, best quality, mountain" | |
num_inference_steps = 2 | |
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( | |
torch_device | |
) | |
initial_images = pipe( | |
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps | |
).images | |
initial_images = initial_images[0, -3:, -3:, -1].flatten() | |
lora_model_id = "hf-internal-testing/civitai-colored-icons-lora" | |
lora_filename = "Colored_Icons_by_vizsumit.safetensors" | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
generator = torch.manual_seed(0) | |
lora_images = pipe( | |
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps | |
).images | |
lora_images = lora_images[0, -3:, -3:, -1].flatten() | |
pipe.unload_lora_weights() | |
generator = torch.manual_seed(0) | |
unloaded_lora_images = pipe( | |
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps | |
).images | |
unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten() | |
self.assertFalse(np.allclose(initial_images, lora_images)) | |
self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3)) | |
# make sure we can load a LoRA again after unloading and they don't have | |
# any undesired effects. | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
generator = torch.manual_seed(0) | |
lora_images_again = pipe( | |
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps | |
).images | |
lora_images_again = lora_images_again[0, -3:, -3:, -1].flatten() | |
self.assertTrue(np.allclose(lora_images, lora_images_again, atol=1e-3)) | |