Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import tempfile | |
import unittest | |
import numpy as np | |
import torch | |
from diffusers.models import ModelMixin, UNet3DConditionModel | |
from diffusers.models.attention_processor import AttnProcessor, LoRAAttnProcessor | |
from diffusers.utils import ( | |
floats_tensor, | |
logging, | |
skip_mps, | |
torch_device, | |
) | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.testing_utils import enable_full_determinism | |
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
enable_full_determinism() | |
logger = logging.get_logger(__name__) | |
def create_lora_layers(model, mock_weights: bool = True): | |
lora_attn_procs = {} | |
for name in model.attn_processors.keys(): | |
has_cross_attention = name.endswith("attn2.processor") and not ( | |
name.startswith("transformer_in") or "temp_attentions" in name.split(".") | |
) | |
cross_attention_dim = model.config.cross_attention_dim if has_cross_attention else None | |
if name.startswith("mid_block"): | |
hidden_size = model.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(model.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = model.config.block_out_channels[block_id] | |
elif name.startswith("transformer_in"): | |
# Note that the `8 * ...` comes from: https://github.com/huggingface/diffusers/blob/7139f0e874f10b2463caa8cbd585762a309d12d6/src/diffusers/models/unet_3d_condition.py#L148 | |
hidden_size = 8 * model.config.attention_head_dim | |
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) | |
lora_attn_procs[name] = lora_attn_procs[name].to(model.device) | |
if mock_weights: | |
# add 1 to weights to mock trained weights | |
with torch.no_grad(): | |
lora_attn_procs[name].to_q_lora.up.weight += 1 | |
lora_attn_procs[name].to_k_lora.up.weight += 1 | |
lora_attn_procs[name].to_v_lora.up.weight += 1 | |
lora_attn_procs[name].to_out_lora.up.weight += 1 | |
return lora_attn_procs | |
class UNet3DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = UNet3DConditionModel | |
main_input_name = "sample" | |
def dummy_input(self): | |
batch_size = 4 | |
num_channels = 4 | |
num_frames = 4 | |
sizes = (32, 32) | |
noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) | |
time_step = torch.tensor([10]).to(torch_device) | |
encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device) | |
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} | |
def input_shape(self): | |
return (4, 4, 32, 32) | |
def output_shape(self): | |
return (4, 4, 32, 32) | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = { | |
"block_out_channels": (32, 64), | |
"down_block_types": ( | |
"CrossAttnDownBlock3D", | |
"DownBlock3D", | |
), | |
"up_block_types": ("UpBlock3D", "CrossAttnUpBlock3D"), | |
"cross_attention_dim": 32, | |
"attention_head_dim": 8, | |
"out_channels": 4, | |
"in_channels": 4, | |
"layers_per_block": 1, | |
"sample_size": 32, | |
} | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def test_xformers_enable_works(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.enable_xformers_memory_efficient_attention() | |
assert ( | |
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ | |
== "XFormersAttnProcessor" | |
), "xformers is not enabled" | |
# Overriding to set `norm_num_groups` needs to be different for this model. | |
def test_forward_with_norm_groups(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["norm_num_groups"] = 32 | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.sample | |
self.assertIsNotNone(output) | |
expected_shape = inputs_dict["sample"].shape | |
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
# Overriding since the UNet3D outputs a different structure. | |
def test_determinism(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
# Warmup pass when using mps (see #372) | |
if torch_device == "mps" and isinstance(model, ModelMixin): | |
model(**self.dummy_input) | |
first = model(**inputs_dict) | |
if isinstance(first, dict): | |
first = first.sample | |
second = model(**inputs_dict) | |
if isinstance(second, dict): | |
second = second.sample | |
out_1 = first.cpu().numpy() | |
out_2 = second.cpu().numpy() | |
out_1 = out_1[~np.isnan(out_1)] | |
out_2 = out_2[~np.isnan(out_2)] | |
max_diff = np.amax(np.abs(out_1 - out_2)) | |
self.assertLessEqual(max_diff, 1e-5) | |
def test_model_attention_slicing(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = 8 | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
model.set_attention_slice("auto") | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
assert output is not None | |
model.set_attention_slice("max") | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
assert output is not None | |
model.set_attention_slice(2) | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
assert output is not None | |
def test_lora_processors(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = 8 | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
with torch.no_grad(): | |
sample1 = model(**inputs_dict).sample | |
lora_attn_procs = create_lora_layers(model) | |
# make sure we can set a list of attention processors | |
model.set_attn_processor(lora_attn_procs) | |
model.to(torch_device) | |
# test that attn processors can be set to itself | |
model.set_attn_processor(model.attn_processors) | |
with torch.no_grad(): | |
sample2 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample | |
sample3 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample | |
sample4 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample | |
assert (sample1 - sample2).abs().max() < 3e-3 | |
assert (sample3 - sample4).abs().max() < 3e-3 | |
# sample 2 and sample 3 should be different | |
assert (sample2 - sample3).abs().max() > 3e-3 | |
def test_lora_save_load(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = 8 | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
with torch.no_grad(): | |
old_sample = model(**inputs_dict).sample | |
lora_attn_procs = create_lora_layers(model) | |
model.set_attn_processor(lora_attn_procs) | |
with torch.no_grad(): | |
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_attn_procs(tmpdirname) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
torch.manual_seed(0) | |
new_model = self.model_class(**init_dict) | |
new_model.to(torch_device) | |
new_model.load_attn_procs(tmpdirname) | |
with torch.no_grad(): | |
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample | |
assert (sample - new_sample).abs().max() < 1e-3 | |
# LoRA and no LoRA should NOT be the same | |
assert (sample - old_sample).abs().max() > 1e-4 | |
def test_lora_save_load_safetensors(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = 8 | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
with torch.no_grad(): | |
old_sample = model(**inputs_dict).sample | |
lora_attn_procs = create_lora_layers(model) | |
model.set_attn_processor(lora_attn_procs) | |
with torch.no_grad(): | |
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_attn_procs(tmpdirname, safe_serialization=True) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))) | |
torch.manual_seed(0) | |
new_model = self.model_class(**init_dict) | |
new_model.to(torch_device) | |
new_model.load_attn_procs(tmpdirname) | |
with torch.no_grad(): | |
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample | |
assert (sample - new_sample).abs().max() < 3e-3 | |
# LoRA and no LoRA should NOT be the same | |
assert (sample - old_sample).abs().max() > 1e-4 | |
def test_lora_save_safetensors_load_torch(self): | |
# enable deterministic behavior for gradient checkpointing | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = 8 | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
lora_attn_procs = create_lora_layers(model, mock_weights=False) | |
model.set_attn_processor(lora_attn_procs) | |
# Saving as torch, properly reloads with directly filename | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_attn_procs(tmpdirname) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
torch.manual_seed(0) | |
new_model = self.model_class(**init_dict) | |
new_model.to(torch_device) | |
new_model.load_attn_procs(tmpdirname, weight_name="pytorch_lora_weights.bin") | |
def test_lora_save_torch_force_load_safetensors_error(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = 8 | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
lora_attn_procs = create_lora_layers(model, mock_weights=False) | |
model.set_attn_processor(lora_attn_procs) | |
# Saving as torch, properly reloads with directly filename | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_attn_procs(tmpdirname) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
torch.manual_seed(0) | |
new_model = self.model_class(**init_dict) | |
new_model.to(torch_device) | |
with self.assertRaises(IOError) as e: | |
new_model.load_attn_procs(tmpdirname, use_safetensors=True) | |
self.assertIn("Error no file named pytorch_lora_weights.safetensors", str(e.exception)) | |
def test_lora_on_off(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = 8 | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
with torch.no_grad(): | |
old_sample = model(**inputs_dict).sample | |
lora_attn_procs = create_lora_layers(model) | |
model.set_attn_processor(lora_attn_procs) | |
with torch.no_grad(): | |
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample | |
model.set_attn_processor(AttnProcessor()) | |
with torch.no_grad(): | |
new_sample = model(**inputs_dict).sample | |
assert (sample - new_sample).abs().max() < 1e-4 | |
assert (sample - old_sample).abs().max() < 3e-3 | |
def test_lora_xformers_on_off(self): | |
# enable deterministic behavior for gradient checkpointing | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = 4 | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
lora_attn_procs = create_lora_layers(model) | |
model.set_attn_processor(lora_attn_procs) | |
# default | |
with torch.no_grad(): | |
sample = model(**inputs_dict).sample | |
model.enable_xformers_memory_efficient_attention() | |
on_sample = model(**inputs_dict).sample | |
model.disable_xformers_memory_efficient_attention() | |
off_sample = model(**inputs_dict).sample | |
assert (sample - on_sample).abs().max() < 1e-4 | |
assert (sample - off_sample).abs().max() < 1e-4 | |
def test_feed_forward_chunking(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["norm_num_groups"] = 32 | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(**inputs_dict)[0] | |
model.enable_forward_chunking() | |
with torch.no_grad(): | |
output_2 = model(**inputs_dict)[0] | |
self.assertEqual(output.shape, output_2.shape, "Shape doesn't match") | |
assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2 | |
# (todo: sayakpaul) implement SLOW tests. | |