Spaces:
Runtime error
Runtime error
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from torch.backends.cuda import sdp_kernel | |
from diffusers import ( | |
CMStochasticIterativeScheduler, | |
ConsistencyModelPipeline, | |
UNet2DModel, | |
) | |
from diffusers.utils import randn_tensor, slow, torch_device | |
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_2, require_torch_gpu | |
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class ConsistencyModelPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = ConsistencyModelPipeline | |
params = UNCONDITIONAL_IMAGE_GENERATION_PARAMS | |
batch_params = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS | |
# Override required_optional_params to remove num_images_per_prompt | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"generator", | |
"latents", | |
"output_type", | |
"return_dict", | |
"callback", | |
"callback_steps", | |
] | |
) | |
def dummy_uncond_unet(self): | |
unet = UNet2DModel.from_pretrained( | |
"diffusers/consistency-models-test", | |
subfolder="test_unet", | |
) | |
return unet | |
def dummy_cond_unet(self): | |
unet = UNet2DModel.from_pretrained( | |
"diffusers/consistency-models-test", | |
subfolder="test_unet_class_cond", | |
) | |
return unet | |
def get_dummy_components(self, class_cond=False): | |
if class_cond: | |
unet = self.dummy_cond_unet | |
else: | |
unet = self.dummy_uncond_unet | |
# Default to CM multistep sampler | |
scheduler = CMStochasticIterativeScheduler( | |
num_train_timesteps=40, | |
sigma_min=0.002, | |
sigma_max=80.0, | |
) | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"batch_size": 1, | |
"num_inference_steps": None, | |
"timesteps": [22, 0], | |
"generator": generator, | |
"output_type": "np", | |
} | |
return inputs | |
def test_consistency_model_pipeline_multistep(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = ConsistencyModelPipeline(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
assert image.shape == (1, 32, 32, 3) | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
def test_consistency_model_pipeline_multistep_class_cond(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components(class_cond=True) | |
pipe = ConsistencyModelPipeline(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["class_labels"] = 0 | |
image = pipe(**inputs).images | |
assert image.shape == (1, 32, 32, 3) | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
def test_consistency_model_pipeline_onestep(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = ConsistencyModelPipeline(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["num_inference_steps"] = 1 | |
inputs["timesteps"] = None | |
image = pipe(**inputs).images | |
assert image.shape == (1, 32, 32, 3) | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
def test_consistency_model_pipeline_onestep_class_cond(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components(class_cond=True) | |
pipe = ConsistencyModelPipeline(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["num_inference_steps"] = 1 | |
inputs["timesteps"] = None | |
inputs["class_labels"] = 0 | |
image = pipe(**inputs).images | |
assert image.shape == (1, 32, 32, 3) | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
class ConsistencyModelPipelineSlowTests(unittest.TestCase): | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, seed=0, get_fixed_latents=False, device="cpu", dtype=torch.float32, shape=(1, 3, 64, 64)): | |
generator = torch.manual_seed(seed) | |
inputs = { | |
"num_inference_steps": None, | |
"timesteps": [22, 0], | |
"class_labels": 0, | |
"generator": generator, | |
"output_type": "np", | |
} | |
if get_fixed_latents: | |
latents = self.get_fixed_latents(seed=seed, device=device, dtype=dtype, shape=shape) | |
inputs["latents"] = latents | |
return inputs | |
def get_fixed_latents(self, seed=0, device="cpu", dtype=torch.float32, shape=(1, 3, 64, 64)): | |
if type(device) == str: | |
device = torch.device(device) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
return latents | |
def test_consistency_model_cd_multistep(self): | |
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2") | |
scheduler = CMStochasticIterativeScheduler( | |
num_train_timesteps=40, | |
sigma_min=0.002, | |
sigma_max=80.0, | |
) | |
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler) | |
pipe.to(torch_device=torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs() | |
image = pipe(**inputs).images | |
assert image.shape == (1, 64, 64, 3) | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 | |
def test_consistency_model_cd_onestep(self): | |
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2") | |
scheduler = CMStochasticIterativeScheduler( | |
num_train_timesteps=40, | |
sigma_min=0.002, | |
sigma_max=80.0, | |
) | |
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler) | |
pipe.to(torch_device=torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs() | |
inputs["num_inference_steps"] = 1 | |
inputs["timesteps"] = None | |
image = pipe(**inputs).images | |
assert image.shape == (1, 64, 64, 3) | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 | |
def test_consistency_model_cd_multistep_flash_attn(self): | |
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2") | |
scheduler = CMStochasticIterativeScheduler( | |
num_train_timesteps=40, | |
sigma_min=0.002, | |
sigma_max=80.0, | |
) | |
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler) | |
pipe.to(torch_device=torch_device, torch_dtype=torch.float16) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(get_fixed_latents=True, device=torch_device) | |
# Ensure usage of flash attention in torch 2.0 | |
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): | |
image = pipe(**inputs).images | |
assert image.shape == (1, 64, 64, 3) | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
def test_consistency_model_cd_onestep_flash_attn(self): | |
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2") | |
scheduler = CMStochasticIterativeScheduler( | |
num_train_timesteps=40, | |
sigma_min=0.002, | |
sigma_max=80.0, | |
) | |
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler) | |
pipe.to(torch_device=torch_device, torch_dtype=torch.float16) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(get_fixed_latents=True, device=torch_device) | |
inputs["num_inference_steps"] = 1 | |
inputs["timesteps"] = None | |
# Ensure usage of flash attention in torch 2.0 | |
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): | |
image = pipe(**inputs).images | |
assert image.shape == (1, 64, 64, 3) | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |