Spaces:
Running
Running
File size: 12,810 Bytes
fe994c3 199c8cd fe994c3 199c8cd fe994c3 199c8cd 698f59b 199c8cd 33c9407 199c8cd 698f59b 17e9c1f 698f59b 4359005 698f59b 4359005 698f59b dc057d1 698f59b dc057d1 698f59b 38e4fb0 4359005 38eb8fe 698f59b 38e4fb0 698f59b dc057d1 698f59b 38e4fb0 698f59b 38e4fb0 698f59b 38e4fb0 698f59b 38e4fb0 698f59b 38e4fb0 698f59b 38e4fb0 698f59b 38e4fb0 698f59b 4359005 38e4fb0 4359005 38e4fb0 698f59b 38e4fb0 17e9c1f 4359005 698f59b 38e4fb0 698f59b 63e0d46 4359005 1dbaff9 63e0d46 4359005 63e0d46 4359005 63e0d46 4359005 63e0d46 199c8cd 6e14098 199c8cd 0f0afe4 199c8cd 00987e4 199c8cd 1388f28 199c8cd 1388f28 698f59b 1388f28 57b27d9 af6c0a4 4359005 af6c0a4 4359005 af6c0a4 4359005 1388f28 63e0d46 4359005 63e0d46 1388f28 57b27d9 1388f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import gradio as gr
from io import BytesIO
import os
import sys
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
import torch
from torchvision import transforms as T
from revq.models.quantizer import sinkhorn
from revq.models.preprocessor import Preprocessor
from revq.models.revq import ReVQ
from revq.models.revq_quantizer import Quantizer
from revq.utils.init import seed_everything
seed_everything(42)
from revq.models.vqgan_hf import VQModelHF
# matplotlib.rcParams['font.family'] = 'Times New Roman'
from diffusers import AutoencoderDC
#################
handler = None
device = torch.device("cpu")
#################
def load_preprocessor(device, is_eval: bool = True, ckpt_path: str = "./ckpt/preprocessor.pth"):
preprocessor = Preprocessor(
input_data_size=[32,8,8]
).to(device)
preprocessor.load_state_dict(
torch.load(ckpt_path, map_location=device, weights_only=True)
)
if is_eval:
preprocessor.eval()
return preprocessor
# ReVQ: for reset strategy
def fig_to_array(fig):
buf = BytesIO()
fig.savefig(buf, format='png') # 改为 png,不用 webp
buf.seek(0)
image = Image.open(buf)
return np.array(image)
def get_codebook(quantizer):
with torch.no_grad():
codes = quantizer.embeddings.squeeze().detach()
return codes
def draw_fig(ax, quantizer, data, color="r", title=""):
codes = get_codebook(quantizer)
ax.scatter(data[:, 0], data[:, 1], s=60, marker="*")
if color == "r":
ax.scatter(codes[:, 0], codes[:, 1], s=40, c='red', alpha=0.5)
else:
ax.scatter(codes[:, 0], codes[:, 1], s=40, c='green', alpha=0.5)
ax.set_xlim(-5, 10)
ax.set_ylim(-10, 5)
ax.tick_params(axis='x', labelsize=22)
ax.tick_params(axis='y', labelsize=22)
ax.set_xticks(np.arange(-5, 11, 5))
ax.set_yticks(np.arange(-10, 6, 5))
ax.grid(linestyle='--', color='#333333', alpha=0.7)
ax.set_title(f"{title}", fontsize=24)
def draw_arrow(ax, start, end):
for i in range(len(start)):
ax.arrow(start[i][0], start[i][1], end[i][0] - start[i][0], end[i][1] - start[i][1],
head_width=0.1, head_length=0.1, fc='orange', ec='orange', alpha=0.8,
ls="-", lw=1)
def draw_reset_result(num_data=16, num_code=12):
fig_reset, ax_reset = plt.subplots(1, 6, figsize=(36, 6), dpi=400)
fig_nreset, ax_nreset = plt.subplots(1, 6, figsize=(36, 6), dpi=400)
x = torch.randn(num_data, 1) * 2 + 5
y = torch.randn(num_data, 1) * 2 - 5
data = torch.cat([x, y], dim=1)
quantizer = Quantizer(TYPE='vq', code_dim=2, num_code=num_code, num_group=1, tokens_per_data=1)
optimizer = torch.optim.SGD(quantizer.parameters(), lr=0.1)
quantizer_nreset = Quantizer(TYPE='vq', code_dim=2, num_code=num_code, num_group=1, tokens_per_data=1, auto_reset=False)
optimizer_nreset = torch.optim.SGD(quantizer_nreset.parameters(), lr=0.1)
draw_fig(ax_reset[0], quantizer, data, color='g', title=f"Initialization")
draw_fig(ax_nreset[0], quantizer_nreset, data, color='r', title=f"Initialization")
ax_reset[0].legend(["Data", "Code"], loc="upper right", fontsize=24)
ax_nreset[0].legend(["Data", "Code"], loc="upper right", fontsize=24)
i_list = [1, 3, 10, 50, 200]
count = 0
for i in range(500):
optimizer.zero_grad()
optimizer_nreset.zero_grad()
output_dict = quantizer(data.unsqueeze(1))
output_dict_nreset = quantizer_nreset(data.unsqueeze(1))
quant_data = output_dict["x_quant"].squeeze()
quant_data_nreset = output_dict_nreset["x_quant"].squeeze()
indices = output_dict["indices"].squeeze()
indices = output_dict_nreset["indices"].squeeze()
loss = torch.mean((quant_data - data) ** 2)
loss_nreset = torch.mean((quant_data_nreset - data) ** 2)
loss.backward()
loss_nreset.backward()
optimizer.step()
optimizer_nreset.step()
if (i+1) in i_list:
count += 1
draw_fig(ax_reset[count], quantizer, data, color='g', title=f"Iters: {i+1}, MSE: {loss.item():.1f}")
draw_arrow(ax_reset[count], quant_data.detach().numpy(), data.numpy())
draw_fig(ax_nreset[count], quantizer_nreset, data, color='r', title=f"Iters: {i+1}, MSE: {loss_nreset.item():.1f}")
draw_arrow(ax_nreset[count], quant_data_nreset.detach().numpy(), data.numpy())
quantizer.reset()
fig_reset.suptitle("VQ Codebook Training with Reset", fontsize=24, y=1.05)
fig_nreset.suptitle("VQ Codebook Training without Reset", fontsize=24, y=1.05)
img_reset = fig_to_array(fig_reset)
img_nreset = fig_to_array(fig_nreset)
return img_nreset, img_reset
# end
# ReVQ: for multi-group
def get_codebook_v2(quantizer):
with torch.no_grad():
embedding = quantizer.embeddings
if quantizer.num_group == 1:
group1 = embedding[0].squeeze()
group2 = embedding[0].squeeze()
else:
group1 = embedding[0].squeeze()
group2 = embedding[1].squeeze()
codes = torch.cartesian_prod(group1, group2)
return codes
def draw_fig_v2(ax, quantizer, data, color='r', title=""):
codes = get_codebook_v2(quantizer)
ax.scatter(data[:, 0], data[:, 1], s=60, marker="*")
if color == "r":
ax.scatter(codes[:, 0], codes[:, 1], s=20, c='red', alpha=0.5)
else:
ax.scatter(codes[:, 0], codes[:, 1], s=20, c='green', alpha=0.5)
ax.plot([-12, 12], [-12, 12], color='orange', linestyle='--', linewidth=2)
ax.set_xlim(-12, 12)
ax.set_ylim(-12, 12)
ax.tick_params(axis='x', labelsize=22)
ax.tick_params(axis='y', labelsize=22)
ax.set_xticks(np.arange(-10, 11, 5))
ax.set_yticks(np.arange(-10, 11, 5))
ax.grid(linestyle='--', color='#333333', alpha=0.7)
ax.set_title(f"{title}", fontsize=26)
def draw_multi_group_result(num_data=16, num_code=12):
fig_s, ax_s = plt.subplots(1, 6, figsize=(36, 6), dpi=400)
fig_m, ax_m = plt.subplots(1, 6, figsize=(36, 6), dpi=400)
x = torch.randn(num_data, 1) * 3 + 4
y = torch.randn(num_data, 1) * 3 - 4
data = torch.cat([x, y], dim=1)
quantizer_s = Quantizer(TYPE='vq', code_dim=1, num_code=num_code, num_group=1, tokens_per_data=2)
optimizer_s = torch.optim.SGD(quantizer_s.parameters(), lr=0.1)
quantizer_m = Quantizer(TYPE='vq', code_dim=1, num_code=num_code, num_group=2, tokens_per_data=2)
optimizer_m = torch.optim.SGD(quantizer_m.parameters(), lr=0.1)
draw_fig_v2(ax_s[0], quantizer_s, data, color='r', title=f"Initialization")
draw_fig_v2(ax_m[0], quantizer_m, data, color='g', title=f"Initialization")
ax_s[0].legend(["Data", "Code"], loc="upper right", fontsize=24)
ax_m[0].legend(["Data", "Code"], loc="upper right", fontsize=24)
i_list = [5, 20, 50, 200, 1000]
count = 0
for i in range(1500):
optimizer_s.zero_grad()
optimizer_m.zero_grad()
quant_data_s = quantizer_s(data.unsqueeze(-1))["x_quant"].squeeze()
quant_data_m = quantizer_m(data.unsqueeze(-1))["x_quant"].squeeze()
loss_s = torch.mean((quant_data_s - data) ** 2)
loss_m = torch.mean((quant_data_m - data) ** 2)
loss_s.backward()
loss_m.backward()
optimizer_s.step()
optimizer_m.step()
if (i+1) in i_list:
count += 1
draw_fig_v2(ax_s[count], quantizer_s, data, color='r', title=f"Iters: {i+1}, MSE: {loss_s.item():.1f}")
draw_fig_v2(ax_m[count], quantizer_m, data, color='g', title=f"Iters: {i+1}, MSE: {loss_m.item():.1f}")
quantizer_s.reset()
quantizer_m.reset()
fig_s.suptitle("VQ Codebook Training with Single Group", fontsize=24, y=1.05)
fig_m.suptitle("VQ Codebook Training with Multi Group", fontsize=24, y=1.05)
img_s = fig_to_array(fig_s)
img_m = fig_to_array(fig_m)
return img_s, img_m
# end
# ReVQ: for image reconstruction
class Handler:
def __init__(self, device):
self.transform = T.Compose([
T.Resize(256),
T.CenterCrop(256),
T.ToTensor()
])
self.device = device
self.basevq = VQModelHF.from_pretrained("BorelTHU/basevq-16x16x4")
self.basevq.to(self.device)
self.basevq.eval()
self.vqgan = VQModelHF.from_pretrained("BorelTHU/vqgan-16x16")
self.vqgan.to(self.device)
self.vqgan.eval()
self.optvq = VQModelHF.from_pretrained("BorelTHU/optvq-16x16x4")
self.optvq.to(self.device)
self.optvq.eval()
self.vae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers")
self.vae.to(self.device)
self.vae.eval()
self.preprocesser = load_preprocessor(self.device)
self.revq = ReVQ.from_pretrained("AndyRaoTHU/revq-512T")
self.revq.to(self.device)
self.revq.eval()
# print("Models loaded successfully!")
def tensor_to_image(self, tensor):
img = tensor.squeeze(0).cpu().permute(1, 2, 0).numpy()
img = (img + 1) / 2 * 255
img = img.astype("uint8")
return img
def process_image(self, img: np.ndarray):
img = Image.fromarray(img.astype("uint8"))
img = self.transform(img)
img = img.unsqueeze(0).to(self.device)
with torch.no_grad():
img = 2 * img - 1
# basevq
quant, *_ = self.basevq.encode(img)
basevq_rec = self.basevq.decode(quant)
# vqgan
quant, *_ = self.vqgan.encode(img)
vqgan_rec = self.vqgan.decode(quant)
# revq
lat = self.vae.encode(img).latent
lat = lat.contiguous()
lat = self.preprocesser(lat)
lat = self.revq.quantize(lat)
revq_rec = self.revq.decode(lat)
revq_rec = revq_rec.contiguous()
revq_rec = self.preprocesser.inverse(revq_rec)
revq_rec = self.vae.decode(revq_rec).sample
# tensor to PIL image
img = self.tensor_to_image(img)
basevq_rec = self.tensor_to_image(basevq_rec)
vqgan_rec = self.tensor_to_image(vqgan_rec)
revq_rec = self.tensor_to_image(revq_rec)
return basevq_rec, vqgan_rec, revq_rec
if __name__ == "__main__":
# create the model handler
handler = Handler(device=device)
print("Creating Gradio interface...")
# Demo 1 接口:图像重建
demo1 = gr.Interface(
fn=handler.process_image,
inputs=gr.Image(label="Input Image", type="numpy"),
outputs=[
gr.Image(label="BaseVQ Reconstruction", type="numpy"),
gr.Image(label="VQGAN Reconstruction", type="numpy"),
gr.Image(label="ReVQ Reconstruction", type="numpy"),
],
title="Demo 1: Image Reconstruction",
description="Upload an image to see how different VQ models (BaseVQ, VQGAN, ReVQ) reconstruct it from latent codes."
)
with gr.Blocks() as demo2:
gr.Markdown("## Demo 2: Codebook Reset Strategy Visualization")
gr.Markdown("Visualizes codebook and data movement at different training steps with or without codebook reset strategy.")
with gr.Row():
num_data = gr.Slider(label="num_data", value=16, minimum=10, maximum=20, step=1)
num_code = gr.Slider(label="num_code", value=12, minimum=8, maximum=16, step=1)
submit_btn = gr.Button("Run Visualization")
with gr.Column(): # 垂直输出
out_without_reset = gr.Image(label="Without Reset")
out_with_reset = gr.Image(label="With Reset")
submit_btn.click(fn=draw_reset_result, inputs=[num_data, num_code], outputs=[out_without_reset, out_with_reset])
with gr.Blocks() as demo3:
gr.Markdown("## Demo 3: Channel Multi-Group Strategy Visualization")
gr.Markdown("Visualizes codebook and data movement at different training steps with or without multi-group strategy.")
with gr.Row():
num_data = gr.Slider(label="num_data", value=32, minimum=28, maximum=40, step=1)
num_code = gr.Slider(label="num_code", value=8, minimum=6, maximum=10, step=1)
submit_btn = gr.Button("Run Visualization")
with gr.Column(): # 垂直输出
out_s = gr.Image(label="Single Group")
out_m = gr.Image(label="Multi Group")
submit_btn.click(fn=draw_multi_group_result, inputs=[num_data, num_code], outputs=[out_s, out_m])
demo = gr.TabbedInterface(
interface_list=[demo1, demo2, demo3],
tab_names=["Image Reconstruction", "Reset Strategy", "Channel Multi-Group Strategy"]
)
demo.launch(share=True)
|