File size: 12,810 Bytes
fe994c3
199c8cd
 
 
fe994c3
199c8cd
 
 
 
 
fe994c3
199c8cd
 
 
 
 
 
698f59b
199c8cd
 
 
33c9407
199c8cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698f59b
17e9c1f
 
 
 
 
 
 
698f59b
 
 
 
 
4359005
698f59b
 
4359005
 
 
 
698f59b
 
 
 
 
 
 
dc057d1
698f59b
 
 
 
 
 
 
 
dc057d1
 
698f59b
 
 
 
 
38e4fb0
 
4359005
 
38eb8fe
 
698f59b
38e4fb0
698f59b
 
dc057d1
698f59b
38e4fb0
698f59b
38e4fb0
698f59b
38e4fb0
698f59b
38e4fb0
698f59b
38e4fb0
698f59b
38e4fb0
698f59b
38e4fb0
698f59b
 
 
4359005
38e4fb0
 
4359005
38e4fb0
698f59b
 
 
38e4fb0
 
 
17e9c1f
 
 
4359005
698f59b
38e4fb0
698f59b
63e0d46
 
 
 
 
 
 
 
 
 
 
 
 
4359005
1dbaff9
63e0d46
4359005
 
 
 
63e0d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4359005
 
63e0d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4359005
 
63e0d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199c8cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e14098
 
 
 
199c8cd
 
 
 
0f0afe4
199c8cd
 
00987e4
199c8cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388f28
 
 
 
 
 
 
 
199c8cd
 
 
 
 
1388f28
698f59b
1388f28
 
 
 
57b27d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af6c0a4
 
 
4359005
af6c0a4
 
 
 
 
 
 
 
 
4359005
af6c0a4
4359005
1388f28
63e0d46
 
 
4359005
63e0d46
 
 
 
 
 
 
 
 
 
 
 
 
1388f28
57b27d9
 
1388f28
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import gradio as gr
from io import BytesIO
import os
import sys

import matplotlib.pyplot as plt
import matplotlib
import numpy as np
from PIL import Image
from omegaconf import OmegaConf

import torch
from torchvision import transforms as T

from revq.models.quantizer import sinkhorn
from revq.models.preprocessor import Preprocessor
from revq.models.revq import ReVQ
from revq.models.revq_quantizer import Quantizer
from revq.utils.init import seed_everything
seed_everything(42)
from revq.models.vqgan_hf import VQModelHF
# matplotlib.rcParams['font.family'] = 'Times New Roman'
from diffusers import AutoencoderDC

#################
handler = None
device = torch.device("cpu")
#################

def load_preprocessor(device, is_eval: bool = True, ckpt_path: str = "./ckpt/preprocessor.pth"):
    preprocessor = Preprocessor(
        input_data_size=[32,8,8]
    ).to(device)
    preprocessor.load_state_dict(
        torch.load(ckpt_path, map_location=device, weights_only=True)
    )
    if is_eval:
        preprocessor.eval()
    return preprocessor

# ReVQ: for reset strategy
def fig_to_array(fig):
    buf = BytesIO()
    fig.savefig(buf, format='png')  # 改为 png,不用 webp
    buf.seek(0)
    image = Image.open(buf)
    return np.array(image)

def get_codebook(quantizer):
    with torch.no_grad():
        codes = quantizer.embeddings.squeeze().detach()
    return codes

def draw_fig(ax, quantizer, data, color="r", title=""):
    codes = get_codebook(quantizer)
    ax.scatter(data[:, 0], data[:, 1], s=60, marker="*")
    if color == "r":
        ax.scatter(codes[:, 0], codes[:, 1], s=40, c='red', alpha=0.5)
    else:
        ax.scatter(codes[:, 0], codes[:, 1], s=40, c='green', alpha=0.5)
    ax.set_xlim(-5, 10)
    ax.set_ylim(-10, 5)
    ax.tick_params(axis='x', labelsize=22)
    ax.tick_params(axis='y', labelsize=22)
    ax.set_xticks(np.arange(-5, 11, 5))
    ax.set_yticks(np.arange(-10, 6, 5))
    ax.grid(linestyle='--', color='#333333', alpha=0.7)
    ax.set_title(f"{title}", fontsize=24)

def draw_arrow(ax, start, end):
    for i in range(len(start)):
        ax.arrow(start[i][0], start[i][1], end[i][0] - start[i][0], end[i][1] - start[i][1],
                head_width=0.1, head_length=0.1, fc='orange', ec='orange', alpha=0.8,
                ls="-", lw=1)

def draw_reset_result(num_data=16, num_code=12):
    fig_reset, ax_reset = plt.subplots(1, 6, figsize=(36, 6), dpi=400)
    fig_nreset, ax_nreset = plt.subplots(1, 6, figsize=(36, 6), dpi=400)
    x = torch.randn(num_data, 1) * 2 + 5
    y = torch.randn(num_data, 1) * 2 - 5
    data = torch.cat([x, y], dim=1)
    quantizer = Quantizer(TYPE='vq', code_dim=2, num_code=num_code, num_group=1, tokens_per_data=1)
    optimizer = torch.optim.SGD(quantizer.parameters(), lr=0.1)
    quantizer_nreset = Quantizer(TYPE='vq', code_dim=2, num_code=num_code, num_group=1, tokens_per_data=1, auto_reset=False)
    optimizer_nreset = torch.optim.SGD(quantizer_nreset.parameters(), lr=0.1)
    draw_fig(ax_reset[0], quantizer, data, color='g', title=f"Initialization")
    draw_fig(ax_nreset[0], quantizer_nreset, data, color='r', title=f"Initialization")
    ax_reset[0].legend(["Data", "Code"], loc="upper right", fontsize=24)
    ax_nreset[0].legend(["Data", "Code"], loc="upper right", fontsize=24)

    i_list = [1, 3, 10, 50, 200]

    count = 0
    for i in range(500):
        optimizer.zero_grad()
        optimizer_nreset.zero_grad()
        output_dict = quantizer(data.unsqueeze(1))
        output_dict_nreset = quantizer_nreset(data.unsqueeze(1))
        quant_data = output_dict["x_quant"].squeeze()
        quant_data_nreset = output_dict_nreset["x_quant"].squeeze()
        indices = output_dict["indices"].squeeze()
        indices = output_dict_nreset["indices"].squeeze()
        loss = torch.mean((quant_data - data) ** 2)
        loss_nreset = torch.mean((quant_data_nreset - data) ** 2)
        loss.backward()
        loss_nreset.backward()
        optimizer.step()
        optimizer_nreset.step()

        if (i+1) in i_list:
            count += 1
            draw_fig(ax_reset[count], quantizer, data, color='g', title=f"Iters: {i+1}, MSE: {loss.item():.1f}")
            draw_arrow(ax_reset[count], quant_data.detach().numpy(), data.numpy())

            draw_fig(ax_nreset[count], quantizer_nreset, data, color='r', title=f"Iters: {i+1}, MSE: {loss_nreset.item():.1f}")
            draw_arrow(ax_nreset[count], quant_data_nreset.detach().numpy(), data.numpy())

        quantizer.reset()

    fig_reset.suptitle("VQ Codebook Training with Reset", fontsize=24, y=1.05)
    fig_nreset.suptitle("VQ Codebook Training without Reset", fontsize=24, y=1.05)

    img_reset = fig_to_array(fig_reset)
    img_nreset = fig_to_array(fig_nreset)

    return img_nreset, img_reset

# end

# ReVQ: for multi-group
def get_codebook_v2(quantizer):
    with torch.no_grad():
        embedding = quantizer.embeddings
        if quantizer.num_group == 1:
            group1 = embedding[0].squeeze()
            group2 = embedding[0].squeeze()
        else:
            group1 = embedding[0].squeeze()
            group2 = embedding[1].squeeze()
        codes = torch.cartesian_prod(group1, group2)
    return codes

def draw_fig_v2(ax, quantizer, data, color='r', title=""):
    codes = get_codebook_v2(quantizer)
    ax.scatter(data[:, 0], data[:, 1], s=60, marker="*")
    if color == "r":
        ax.scatter(codes[:, 0], codes[:, 1], s=20, c='red', alpha=0.5)
    else:
        ax.scatter(codes[:, 0], codes[:, 1], s=20, c='green', alpha=0.5)
    ax.plot([-12, 12], [-12, 12], color='orange', linestyle='--', linewidth=2)
    ax.set_xlim(-12, 12)
    ax.set_ylim(-12, 12)
    ax.tick_params(axis='x', labelsize=22)
    ax.tick_params(axis='y', labelsize=22)
    ax.set_xticks(np.arange(-10, 11, 5))
    ax.set_yticks(np.arange(-10, 11, 5))
    ax.grid(linestyle='--', color='#333333', alpha=0.7)
    ax.set_title(f"{title}", fontsize=26)


def draw_multi_group_result(num_data=16, num_code=12):
    fig_s, ax_s = plt.subplots(1, 6, figsize=(36, 6), dpi=400)
    fig_m, ax_m = plt.subplots(1, 6, figsize=(36, 6), dpi=400)
    x = torch.randn(num_data, 1) * 3 + 4
    y = torch.randn(num_data, 1) * 3 - 4
    data = torch.cat([x, y], dim=1)
    quantizer_s = Quantizer(TYPE='vq', code_dim=1, num_code=num_code, num_group=1, tokens_per_data=2)
    optimizer_s = torch.optim.SGD(quantizer_s.parameters(), lr=0.1)
    quantizer_m = Quantizer(TYPE='vq', code_dim=1, num_code=num_code, num_group=2, tokens_per_data=2)
    optimizer_m = torch.optim.SGD(quantizer_m.parameters(), lr=0.1)
    draw_fig_v2(ax_s[0], quantizer_s, data, color='r', title=f"Initialization")
    draw_fig_v2(ax_m[0], quantizer_m, data, color='g', title=f"Initialization")
    ax_s[0].legend(["Data", "Code"], loc="upper right", fontsize=24)
    ax_m[0].legend(["Data", "Code"], loc="upper right", fontsize=24)
    i_list = [5, 20, 50, 200, 1000]

    count = 0
    for i in range(1500):
        optimizer_s.zero_grad()
        optimizer_m.zero_grad()
        quant_data_s = quantizer_s(data.unsqueeze(-1))["x_quant"].squeeze()
        quant_data_m = quantizer_m(data.unsqueeze(-1))["x_quant"].squeeze()
        loss_s = torch.mean((quant_data_s - data) ** 2)
        loss_m = torch.mean((quant_data_m - data) ** 2)
        loss_s.backward()
        loss_m.backward()
        optimizer_s.step()
        optimizer_m.step()

        if (i+1) in i_list:
            count += 1
            draw_fig_v2(ax_s[count], quantizer_s, data, color='r', title=f"Iters: {i+1}, MSE: {loss_s.item():.1f}")
            draw_fig_v2(ax_m[count], quantizer_m, data, color='g', title=f"Iters: {i+1}, MSE: {loss_m.item():.1f}")

        quantizer_s.reset()
        quantizer_m.reset()

    fig_s.suptitle("VQ Codebook Training with Single Group", fontsize=24, y=1.05)
    fig_m.suptitle("VQ Codebook Training with Multi Group", fontsize=24, y=1.05)

    img_s = fig_to_array(fig_s)
    img_m = fig_to_array(fig_m)

    return img_s, img_m

# end 

# ReVQ: for image reconstruction
class Handler:
    def __init__(self, device):
        self.transform = T.Compose([
            T.Resize(256),
            T.CenterCrop(256),
            T.ToTensor()
        ])
        self.device = device

        
        self.basevq = VQModelHF.from_pretrained("BorelTHU/basevq-16x16x4")
        self.basevq.to(self.device)
        self.basevq.eval()

        self.vqgan = VQModelHF.from_pretrained("BorelTHU/vqgan-16x16")
        self.vqgan.to(self.device)
        self.vqgan.eval()

        self.optvq = VQModelHF.from_pretrained("BorelTHU/optvq-16x16x4")
        self.optvq.to(self.device)
        self.optvq.eval()

        self.vae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers")
        self.vae.to(self.device)
        self.vae.eval()
        self.preprocesser = load_preprocessor(self.device)
        self.revq = ReVQ.from_pretrained("AndyRaoTHU/revq-512T")
        self.revq.to(self.device)
        self.revq.eval()
        # print("Models loaded successfully!")

    def tensor_to_image(self, tensor):
        img = tensor.squeeze(0).cpu().permute(1, 2, 0).numpy()
        img = (img + 1) / 2 * 255
        img = img.astype("uint8")
        return img

    def process_image(self, img: np.ndarray):
        img = Image.fromarray(img.astype("uint8"))
        img = self.transform(img)
        img = img.unsqueeze(0).to(self.device)
        with torch.no_grad():
            img = 2 * img - 1
            # basevq
            quant, *_ = self.basevq.encode(img)
            basevq_rec = self.basevq.decode(quant)
            # vqgan
            quant, *_ = self.vqgan.encode(img)
            vqgan_rec = self.vqgan.decode(quant)
            # revq
            lat = self.vae.encode(img).latent
            lat = lat.contiguous()
            lat = self.preprocesser(lat)
            lat = self.revq.quantize(lat)
            revq_rec = self.revq.decode(lat)
            revq_rec = revq_rec.contiguous()
            revq_rec = self.preprocesser.inverse(revq_rec)
            revq_rec = self.vae.decode(revq_rec).sample
        
        # tensor to PIL image
        img = self.tensor_to_image(img)
        basevq_rec = self.tensor_to_image(basevq_rec)
        vqgan_rec = self.tensor_to_image(vqgan_rec)
        revq_rec = self.tensor_to_image(revq_rec)

        return basevq_rec, vqgan_rec, revq_rec

if __name__ == "__main__":
    # create the model handler
    handler = Handler(device=device)

    print("Creating Gradio interface...")

    # Demo 1 接口:图像重建
    demo1 = gr.Interface(
        fn=handler.process_image,
        inputs=gr.Image(label="Input Image", type="numpy"),
        outputs=[
            gr.Image(label="BaseVQ Reconstruction", type="numpy"),
            gr.Image(label="VQGAN Reconstruction", type="numpy"),
            gr.Image(label="ReVQ Reconstruction", type="numpy"),
        ],
        title="Demo 1: Image Reconstruction",
        description="Upload an image to see how different VQ models (BaseVQ, VQGAN, ReVQ) reconstruct it from latent codes."
    )

    with gr.Blocks() as demo2:
        gr.Markdown("## Demo 2: Codebook Reset Strategy Visualization")
        gr.Markdown("Visualizes codebook and data movement at different training steps with or without codebook reset strategy.")

        with gr.Row():
            num_data = gr.Slider(label="num_data", value=16, minimum=10, maximum=20, step=1)
            num_code = gr.Slider(label="num_code", value=12, minimum=8, maximum=16, step=1)

        submit_btn = gr.Button("Run Visualization")

        with gr.Column():  # 垂直输出
            out_without_reset = gr.Image(label="Without Reset")
            out_with_reset = gr.Image(label="With Reset")

        submit_btn.click(fn=draw_reset_result, inputs=[num_data, num_code], outputs=[out_without_reset, out_with_reset])


    with gr.Blocks() as demo3:
        gr.Markdown("## Demo 3: Channel Multi-Group Strategy Visualization")
        gr.Markdown("Visualizes codebook and data movement at different training steps with or without multi-group strategy.")

        with gr.Row():
            num_data = gr.Slider(label="num_data", value=32, minimum=28, maximum=40, step=1)
            num_code = gr.Slider(label="num_code", value=8, minimum=6, maximum=10, step=1)

        submit_btn = gr.Button("Run Visualization")

        with gr.Column():  # 垂直输出
            out_s = gr.Image(label="Single Group")
            out_m = gr.Image(label="Multi Group")

        submit_btn.click(fn=draw_multi_group_result, inputs=[num_data, num_code], outputs=[out_s, out_m])

    demo = gr.TabbedInterface(
        interface_list=[demo1, demo2, demo3],
        tab_names=["Image Reconstruction", "Reset Strategy", "Channel Multi-Group Strategy"]
    )

    demo.launch(share=True)