import gradio as gr from io import BytesIO import os import sys import matplotlib.pyplot as plt import matplotlib import numpy as np from PIL import Image from omegaconf import OmegaConf import torch from torchvision import transforms as T from revq.models.quantizer import sinkhorn from revq.models.preprocessor import Preprocessor from revq.models.revq import ReVQ from revq.models.revq_quantizer import Quantizer from revq.utils.init import seed_everything seed_everything(42) from revq.models.vqgan_hf import VQModelHF # matplotlib.rcParams['font.family'] = 'Times New Roman' from diffusers import AutoencoderDC ################# handler = None device = torch.device("cpu") ################# def load_preprocessor(device, is_eval: bool = True, ckpt_path: str = "./ckpt/preprocessor.pth"): preprocessor = Preprocessor( input_data_size=[32,8,8] ).to(device) preprocessor.load_state_dict( torch.load(ckpt_path, map_location=device, weights_only=True) ) if is_eval: preprocessor.eval() return preprocessor # ReVQ: for reset strategy def fig_to_array(fig): buf = BytesIO() fig.savefig(buf, format='png') # 改为 png,不用 webp buf.seek(0) image = Image.open(buf) return np.array(image) def get_codebook(quantizer): with torch.no_grad(): codes = quantizer.embeddings.squeeze().detach() return codes def draw_fig(ax, quantizer, data, color="r", title=""): codes = get_codebook(quantizer) ax.scatter(data[:, 0], data[:, 1], s=60, marker="*") if color == "r": ax.scatter(codes[:, 0], codes[:, 1], s=40, c='red', alpha=0.5) else: ax.scatter(codes[:, 0], codes[:, 1], s=40, c='green', alpha=0.5) ax.set_xlim(-5, 10) ax.set_ylim(-10, 5) ax.tick_params(axis='x', labelsize=22) ax.tick_params(axis='y', labelsize=22) ax.set_xticks(np.arange(-5, 11, 5)) ax.set_yticks(np.arange(-10, 6, 5)) ax.grid(linestyle='--', color='#333333', alpha=0.7) ax.set_title(f"{title}", fontsize=24) def draw_arrow(ax, start, end): for i in range(len(start)): ax.arrow(start[i][0], start[i][1], end[i][0] - start[i][0], end[i][1] - start[i][1], head_width=0.1, head_length=0.1, fc='orange', ec='orange', alpha=0.8, ls="-", lw=1) def draw_reset_result(num_data=16, num_code=12): fig_reset, ax_reset = plt.subplots(1, 6, figsize=(36, 6), dpi=400) fig_nreset, ax_nreset = plt.subplots(1, 6, figsize=(36, 6), dpi=400) x = torch.randn(num_data, 1) * 2 + 5 y = torch.randn(num_data, 1) * 2 - 5 data = torch.cat([x, y], dim=1) quantizer = Quantizer(TYPE='vq', code_dim=2, num_code=num_code, num_group=1, tokens_per_data=1) optimizer = torch.optim.SGD(quantizer.parameters(), lr=0.1) quantizer_nreset = Quantizer(TYPE='vq', code_dim=2, num_code=num_code, num_group=1, tokens_per_data=1, auto_reset=False) optimizer_nreset = torch.optim.SGD(quantizer_nreset.parameters(), lr=0.1) draw_fig(ax_reset[0], quantizer, data, color='g', title=f"Initialization") draw_fig(ax_nreset[0], quantizer_nreset, data, color='r', title=f"Initialization") ax_reset[0].legend(["Data", "Code"], loc="upper right", fontsize=24) ax_nreset[0].legend(["Data", "Code"], loc="upper right", fontsize=24) i_list = [1, 3, 10, 50, 200] count = 0 for i in range(500): optimizer.zero_grad() optimizer_nreset.zero_grad() output_dict = quantizer(data.unsqueeze(1)) output_dict_nreset = quantizer_nreset(data.unsqueeze(1)) quant_data = output_dict["x_quant"].squeeze() quant_data_nreset = output_dict_nreset["x_quant"].squeeze() indices = output_dict["indices"].squeeze() indices = output_dict_nreset["indices"].squeeze() loss = torch.mean((quant_data - data) ** 2) loss_nreset = torch.mean((quant_data_nreset - data) ** 2) loss.backward() loss_nreset.backward() optimizer.step() optimizer_nreset.step() if (i+1) in i_list: count += 1 draw_fig(ax_reset[count], quantizer, data, color='g', title=f"Iters: {i+1}, MSE: {loss.item():.1f}") draw_arrow(ax_reset[count], quant_data.detach().numpy(), data.numpy()) draw_fig(ax_nreset[count], quantizer_nreset, data, color='r', title=f"Iters: {i+1}, MSE: {loss_nreset.item():.1f}") draw_arrow(ax_nreset[count], quant_data_nreset.detach().numpy(), data.numpy()) quantizer.reset() fig_reset.suptitle("VQ Codebook Training with Reset", fontsize=24, y=1.05) fig_nreset.suptitle("VQ Codebook Training without Reset", fontsize=24, y=1.05) img_reset = fig_to_array(fig_reset) img_nreset = fig_to_array(fig_nreset) return img_nreset, img_reset # end # ReVQ: for multi-group def get_codebook_v2(quantizer): with torch.no_grad(): embedding = quantizer.embeddings if quantizer.num_group == 1: group1 = embedding[0].squeeze() group2 = embedding[0].squeeze() else: group1 = embedding[0].squeeze() group2 = embedding[1].squeeze() codes = torch.cartesian_prod(group1, group2) return codes def draw_fig_v2(ax, quantizer, data, color='r', title=""): codes = get_codebook_v2(quantizer) ax.scatter(data[:, 0], data[:, 1], s=60, marker="*") if color == "r": ax.scatter(codes[:, 0], codes[:, 1], s=20, c='red', alpha=0.5) else: ax.scatter(codes[:, 0], codes[:, 1], s=20, c='green', alpha=0.5) ax.plot([-12, 12], [-12, 12], color='orange', linestyle='--', linewidth=2) ax.set_xlim(-12, 12) ax.set_ylim(-12, 12) ax.tick_params(axis='x', labelsize=22) ax.tick_params(axis='y', labelsize=22) ax.set_xticks(np.arange(-10, 11, 5)) ax.set_yticks(np.arange(-10, 11, 5)) ax.grid(linestyle='--', color='#333333', alpha=0.7) ax.set_title(f"{title}", fontsize=26) def draw_multi_group_result(num_data=16, num_code=12): fig_s, ax_s = plt.subplots(1, 6, figsize=(36, 6), dpi=400) fig_m, ax_m = plt.subplots(1, 6, figsize=(36, 6), dpi=400) x = torch.randn(num_data, 1) * 3 + 4 y = torch.randn(num_data, 1) * 3 - 4 data = torch.cat([x, y], dim=1) quantizer_s = Quantizer(TYPE='vq', code_dim=1, num_code=num_code, num_group=1, tokens_per_data=2) optimizer_s = torch.optim.SGD(quantizer_s.parameters(), lr=0.1) quantizer_m = Quantizer(TYPE='vq', code_dim=1, num_code=num_code, num_group=2, tokens_per_data=2) optimizer_m = torch.optim.SGD(quantizer_m.parameters(), lr=0.1) draw_fig_v2(ax_s[0], quantizer_s, data, color='r', title=f"Initialization") draw_fig_v2(ax_m[0], quantizer_m, data, color='g', title=f"Initialization") ax_s[0].legend(["Data", "Code"], loc="upper right", fontsize=24) ax_m[0].legend(["Data", "Code"], loc="upper right", fontsize=24) i_list = [5, 20, 50, 200, 1000] count = 0 for i in range(1500): optimizer_s.zero_grad() optimizer_m.zero_grad() quant_data_s = quantizer_s(data.unsqueeze(-1))["x_quant"].squeeze() quant_data_m = quantizer_m(data.unsqueeze(-1))["x_quant"].squeeze() loss_s = torch.mean((quant_data_s - data) ** 2) loss_m = torch.mean((quant_data_m - data) ** 2) loss_s.backward() loss_m.backward() optimizer_s.step() optimizer_m.step() if (i+1) in i_list: count += 1 draw_fig_v2(ax_s[count], quantizer_s, data, color='r', title=f"Iters: {i+1}, MSE: {loss_s.item():.1f}") draw_fig_v2(ax_m[count], quantizer_m, data, color='g', title=f"Iters: {i+1}, MSE: {loss_m.item():.1f}") quantizer_s.reset() quantizer_m.reset() fig_s.suptitle("VQ Codebook Training with Single Group", fontsize=24, y=1.05) fig_m.suptitle("VQ Codebook Training with Multi Group", fontsize=24, y=1.05) img_s = fig_to_array(fig_s) img_m = fig_to_array(fig_m) return img_s, img_m # end # ReVQ: for image reconstruction class Handler: def __init__(self, device): self.transform = T.Compose([ T.Resize(256), T.CenterCrop(256), T.ToTensor() ]) self.device = device self.basevq = VQModelHF.from_pretrained("BorelTHU/basevq-16x16x4") self.basevq.to(self.device) self.basevq.eval() self.vqgan = VQModelHF.from_pretrained("BorelTHU/vqgan-16x16") self.vqgan.to(self.device) self.vqgan.eval() self.optvq = VQModelHF.from_pretrained("BorelTHU/optvq-16x16x4") self.optvq.to(self.device) self.optvq.eval() self.vae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers") self.vae.to(self.device) self.vae.eval() self.preprocesser = load_preprocessor(self.device) self.revq = ReVQ.from_pretrained("AndyRaoTHU/revq-512T") self.revq.to(self.device) self.revq.eval() # print("Models loaded successfully!") def tensor_to_image(self, tensor): img = tensor.squeeze(0).cpu().permute(1, 2, 0).numpy() img = (img + 1) / 2 * 255 img = img.astype("uint8") return img def process_image(self, img: np.ndarray): img = Image.fromarray(img.astype("uint8")) img = self.transform(img) img = img.unsqueeze(0).to(self.device) with torch.no_grad(): img = 2 * img - 1 # basevq quant, *_ = self.basevq.encode(img) basevq_rec = self.basevq.decode(quant) # vqgan quant, *_ = self.vqgan.encode(img) vqgan_rec = self.vqgan.decode(quant) # revq lat = self.vae.encode(img).latent lat = lat.contiguous() lat = self.preprocesser(lat) lat = self.revq.quantize(lat) revq_rec = self.revq.decode(lat) revq_rec = revq_rec.contiguous() revq_rec = self.preprocesser.inverse(revq_rec) revq_rec = self.vae.decode(revq_rec).sample # tensor to PIL image img = self.tensor_to_image(img) basevq_rec = self.tensor_to_image(basevq_rec) vqgan_rec = self.tensor_to_image(vqgan_rec) revq_rec = self.tensor_to_image(revq_rec) return basevq_rec, vqgan_rec, revq_rec if __name__ == "__main__": # create the model handler handler = Handler(device=device) print("Creating Gradio interface...") # Demo 1 接口:图像重建 demo1 = gr.Interface( fn=handler.process_image, inputs=gr.Image(label="Input Image", type="numpy"), outputs=[ gr.Image(label="BaseVQ Reconstruction", type="numpy"), gr.Image(label="VQGAN Reconstruction", type="numpy"), gr.Image(label="ReVQ Reconstruction", type="numpy"), ], title="Demo 1: Image Reconstruction", description="Upload an image to see how different VQ models (BaseVQ, VQGAN, ReVQ) reconstruct it from latent codes." ) with gr.Blocks() as demo2: gr.Markdown("## Demo 2: Codebook Reset Strategy Visualization") gr.Markdown("Visualizes codebook and data movement at different training steps with or without codebook reset strategy.") with gr.Row(): num_data = gr.Slider(label="num_data", value=16, minimum=10, maximum=20, step=1) num_code = gr.Slider(label="num_code", value=12, minimum=8, maximum=16, step=1) submit_btn = gr.Button("Run Visualization") with gr.Column(): # 垂直输出 out_without_reset = gr.Image(label="Without Reset") out_with_reset = gr.Image(label="With Reset") submit_btn.click(fn=draw_reset_result, inputs=[num_data, num_code], outputs=[out_without_reset, out_with_reset]) with gr.Blocks() as demo3: gr.Markdown("## Demo 3: Channel Multi-Group Strategy Visualization") gr.Markdown("Visualizes codebook and data movement at different training steps with or without multi-group strategy.") with gr.Row(): num_data = gr.Slider(label="num_data", value=32, minimum=28, maximum=40, step=1) num_code = gr.Slider(label="num_code", value=8, minimum=6, maximum=10, step=1) submit_btn = gr.Button("Run Visualization") with gr.Column(): # 垂直输出 out_s = gr.Image(label="Single Group") out_m = gr.Image(label="Multi Group") submit_btn.click(fn=draw_multi_group_result, inputs=[num_data, num_code], outputs=[out_s, out_m]) demo = gr.TabbedInterface( interface_list=[demo1, demo2, demo3], tab_names=["Image Reconstruction", "Reset Strategy", "Channel Multi-Group Strategy"] ) demo.launch(share=True)