File size: 22,029 Bytes
a773878
 
 
 
 
 
 
 
 
111954a
a773878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63279a9
 
 
 
 
 
 
 
 
a773878
 
 
 
 
 
 
 
 
63279a9
a773878
 
 
 
 
 
 
 
 
 
 
 
63279a9
3f1b4af
63279a9
 
 
 
 
 
 
 
 
 
 
 
 
a773878
 
 
 
3f1b4af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a773878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63279a9
a773878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111954a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
"""
Document processing service layer.
"""
import tempfile
import logging
import time
import os
import threading
from pathlib import Path
from typing import Optional, Tuple, Any, List

from src.core.config import config
from src.core.exceptions import (
    DocumentProcessingError, 
    FileSizeLimitError, 
    UnsupportedFileTypeError,
    ConversionError
)
from src.core.parser_factory import ParserFactory
from src.core.latex_to_markdown_converter import convert_latex_to_markdown


class DocumentService:
    """Service for handling document processing operations."""
    
    def __init__(self):
        self._conversion_in_progress = False
        self._cancellation_flag: Optional[threading.Event] = None
    
    def set_cancellation_flag(self, flag: threading.Event) -> None:
        """Set the cancellation flag for this service."""
        self._cancellation_flag = flag
    
    def is_conversion_in_progress(self) -> bool:
        """Check if conversion is currently in progress."""
        return self._conversion_in_progress
    
    def _check_cancellation(self) -> bool:
        """Check if cancellation has been requested."""
        if self._cancellation_flag and self._cancellation_flag.is_set():
            logging.info("Cancellation detected in document service")
            return True
        return False
    
    def _safe_delete_file(self, file_path: Optional[str]) -> None:
        """Safely delete a file with error handling."""
        if file_path and os.path.exists(file_path):
            try:
                os.unlink(file_path)
            except Exception as e:
                logging.error(f"Error cleaning up temp file {file_path}: {e}")
    
    def _validate_file(self, file_path: str) -> None:
        """Validate file size and type."""
        if not os.path.exists(file_path):
            raise DocumentProcessingError(f"File not found: {file_path}")
        
        # Check file size
        file_size = os.path.getsize(file_path)
        if file_size > config.app.max_file_size:
            raise FileSizeLimitError(
                f"File size ({file_size} bytes) exceeds maximum allowed size "
                f"({config.app.max_file_size} bytes)"
            )
        
        # Check file extension
        file_ext = Path(file_path).suffix.lower()
        if file_ext not in config.app.allowed_extensions:
            raise UnsupportedFileTypeError(
                f"File type '{file_ext}' is not supported. "
                f"Allowed types: {', '.join(config.app.allowed_extensions)}"
            )
    
    def _create_temp_file(self, original_path: str) -> str:
        """Create a temporary file with English filename."""
        original_ext = Path(original_path).suffix
        
        with tempfile.NamedTemporaryFile(suffix=original_ext, delete=False) as temp_file:
            temp_path = temp_file.name
            
            # Copy content in chunks with cancellation checks
            with open(original_path, 'rb') as original:
                chunk_size = 1024 * 1024  # 1MB chunks
                while True:
                    if self._check_cancellation():
                        self._safe_delete_file(temp_path)
                        raise ConversionError("Conversion cancelled during file copy")
                    
                    chunk = original.read(chunk_size)
                    if not chunk:
                        break
                    temp_file.write(chunk)
        
        return temp_path
    
    def _process_latex_content(self, content: str, parser_name: str, ocr_method_name: str) -> str:
        """Process LaTeX content - for GOT-OCR, return raw LaTeX without conversion."""
        # For GOT-OCR, skip LLM conversion and return raw LaTeX
        if parser_name == "GOT-OCR (jpg,png only)":
            logging.info("GOT-OCR detected: returning raw LaTeX output (no LLM conversion)")
            return content
        
        # For other parsers with LaTeX content, process as before
        if (content and 
            ("\\begin" in content or "\\end" in content or "$" in content) and 
            config.api.google_api_key):
            
            logging.info("Converting LaTeX output to Markdown using Gemini API")
            start_convert = time.time()
            
            if self._check_cancellation():
                raise ConversionError("Conversion cancelled before LaTeX conversion")
            
            try:
                from src.core.latex_to_markdown_converter import convert_latex_to_markdown
                markdown_content = convert_latex_to_markdown(content)
                if markdown_content:
                    logging.info(f"LaTeX conversion completed in {time.time() - start_convert:.2f} seconds")
                    return markdown_content
                else:
                    logging.warning("LaTeX to Markdown conversion failed, using raw LaTeX output")
            except Exception as e:
                logging.error(f"Error converting LaTeX to Markdown: {str(e)}")
                # Continue with original content on error
        
        return content
    
    def _create_output_file(self, content: str, output_format: str, original_file_path: Optional[str] = None, parser_name: Optional[str] = None) -> str:
        """Create output file with proper extension and preserved filename."""
        # Determine file extension based on parser and format
        if parser_name == "GOT-OCR (jpg,png only)":
            # For GOT-OCR, use .tex extension
            ext = ".tex"
        else:
            # For other parsers, use format-based extensions
            format_extensions = {
                "markdown": ".md",
                "json": ".json", 
                "text": ".txt",
                "document tags": ".doctags"
            }
            ext = format_extensions.get(output_format.lower(), ".txt")
        
        if self._check_cancellation():
            raise ConversionError("Conversion cancelled before output file creation")
        
        # Create output filename based on original filename if provided
        if original_file_path:
            original_name = Path(original_file_path).stem  # Get filename without extension
            # Clean the filename to be filesystem-safe while preserving spaces and common characters
            clean_name = "".join(c for c in original_name if c.isalnum() or c in (' ', '-', '_', '.', '(', ')')).strip()
            # Replace multiple spaces with single spaces
            clean_name = ' '.join(clean_name.split())
            if not clean_name:  # Fallback if cleaning removes everything
                clean_name = "converted_document"
            
            # Create output file in temp directory with proper name
            temp_dir = tempfile.gettempdir()
            output_filename = f"{clean_name}{ext}"
            tmp_path = os.path.join(temp_dir, output_filename)
            
            # Handle filename conflicts by adding a number suffix
            counter = 1
            base_path = tmp_path
            while os.path.exists(tmp_path):
                name_part = f"{clean_name}_{counter}"
                tmp_path = os.path.join(temp_dir, f"{name_part}{ext}")
                counter += 1
        else:
            # Fallback to random temporary file
            with tempfile.NamedTemporaryFile(mode="w", suffix=ext, delete=False, encoding="utf-8") as tmp:
                tmp_path = tmp.name
        
        # Write content to file
        try:
            with open(tmp_path, "w", encoding="utf-8") as f:
                # Write in chunks with cancellation checks
                chunk_size = 10000  # characters
                for i in range(0, len(content), chunk_size):
                    if self._check_cancellation():
                        self._safe_delete_file(tmp_path)
                        raise ConversionError("Conversion cancelled during output file writing")
                    
                    f.write(content[i:i+chunk_size])
        except Exception as e:
            self._safe_delete_file(tmp_path)
            raise ConversionError(f"Failed to write output file: {str(e)}")
        
        return tmp_path
    
    def convert_document(
        self, 
        file_path: str, 
        parser_name: str, 
        ocr_method_name: str, 
        output_format: str
    ) -> Tuple[str, Optional[str]]:
        """
        Convert a document using the specified parser and OCR method.
        
        Args:
            file_path: Path to the input file
            parser_name: Name of the parser to use
            ocr_method_name: Name of the OCR method to use
            output_format: Output format (Markdown, JSON, Text, Document Tags)
            
        Returns:
            Tuple of (content, output_file_path)
            
        Raises:
            DocumentProcessingError: For general processing errors
            FileSizeLimitError: When file is too large
            UnsupportedFileTypeError: For unsupported file types
            ConversionError: When conversion fails or is cancelled
        """
        if not file_path:
            raise DocumentProcessingError("No file provided")
        
        self._conversion_in_progress = True
        temp_input = None
        output_path = None
        
        try:
            # Validate input file
            self._validate_file(file_path)
            
            if self._check_cancellation():
                raise ConversionError("Conversion cancelled")
            
            # Create temporary file with English name
            temp_input = self._create_temp_file(file_path)
            
            if self._check_cancellation():
                raise ConversionError("Conversion cancelled")
            
            # Process document using parser factory
            start_time = time.time()
            content = ParserFactory.parse_document(
                file_path=temp_input,
                parser_name=parser_name,
                ocr_method_name=ocr_method_name,
                output_format=output_format.lower(),
                cancellation_flag=self._cancellation_flag
            )
            
            if content == "Conversion cancelled.":
                raise ConversionError("Conversion cancelled by parser")
            
            duration = time.time() - start_time
            logging.info(f"Document processed in {duration:.2f} seconds")
            
            if self._check_cancellation():
                raise ConversionError("Conversion cancelled")
            
            # Process LaTeX content if needed
            content = self._process_latex_content(content, parser_name, ocr_method_name)
            
            if self._check_cancellation():
                raise ConversionError("Conversion cancelled")
            
            # Create output file
            output_path = self._create_output_file(content, output_format, file_path, parser_name)
            
            return content, output_path
            
        except (DocumentProcessingError, FileSizeLimitError, UnsupportedFileTypeError, ConversionError):
            # Re-raise our custom exceptions
            self._safe_delete_file(temp_input)
            self._safe_delete_file(output_path)
            raise
        except Exception as e:
            # Wrap unexpected exceptions
            self._safe_delete_file(temp_input)
            self._safe_delete_file(output_path)
            raise DocumentProcessingError(f"Unexpected error during conversion: {str(e)}")
        finally:
            # Clean up temp input file
            self._safe_delete_file(temp_input)
            
            # Clean up output file if cancelled
            if self._check_cancellation() and output_path:
                self._safe_delete_file(output_path)
            
            self._conversion_in_progress = False
    
    def convert_documents(
        self, 
        file_paths: List[str], 
        parser_name: str, 
        ocr_method_name: str, 
        output_format: str,
        processing_type: str = "combined"
    ) -> Tuple[str, Optional[str]]:
        """
        Unified method to convert single or multiple documents.
        
        Args:
            file_paths: List of paths to input files (can be single file)
            parser_name: Name of the parser to use
            ocr_method_name: Name of the OCR method to use
            output_format: Output format (Markdown, JSON, Text, Document Tags)
            processing_type: Type of multi-document processing (combined, individual, summary, comparison)
            
        Returns:
            Tuple of (content, output_file_path)
            
        Raises:
            DocumentProcessingError: For general processing errors
            FileSizeLimitError: When file(s) are too large
            UnsupportedFileTypeError: For unsupported file types
            ConversionError: When conversion fails or is cancelled
        """
        if not file_paths:
            raise DocumentProcessingError("No files provided")
        
        # Route to appropriate processing method
        if len(file_paths) == 1:
            # Single file processing - use existing method
            return self.convert_document(
                file_paths[0], parser_name, ocr_method_name, output_format
            )
        else:
            # Multi-file processing - use new batch method
            return self._convert_multiple_documents(
                file_paths, parser_name, ocr_method_name, output_format, processing_type
            )
    
    def _convert_multiple_documents(
        self, 
        file_paths: List[str], 
        parser_name: str, 
        ocr_method_name: str, 
        output_format: str,
        processing_type: str
    ) -> Tuple[str, Optional[str]]:
        """
        Convert multiple documents using batch processing.
        
        Args:
            file_paths: List of paths to input files
            parser_name: Name of the parser to use
            ocr_method_name: Name of the OCR method to use
            output_format: Output format (Markdown, JSON, Text, Document Tags)
            processing_type: Type of multi-document processing
            
        Returns:
            Tuple of (content, output_file_path)
        """
        self._conversion_in_progress = True
        temp_inputs = []
        output_path = None
        self._original_file_paths = file_paths  # Store original paths for filename reference
        
        try:
            # Validate all files first
            for file_path in file_paths:
                self._validate_file(file_path)
            
            if self._check_cancellation():
                raise ConversionError("Conversion cancelled")
            
            # Create temporary files with English names
            for original_path in file_paths:
                temp_path = self._create_temp_file(original_path)
                temp_inputs.append(temp_path)
                
                if self._check_cancellation():
                    raise ConversionError("Conversion cancelled during file preparation")
            
            # Process documents using parser factory with multi-document support
            start_time = time.time()
            content = self._process_multiple_with_parser(
                temp_inputs, parser_name, ocr_method_name, output_format, processing_type
            )
            
            if content == "Conversion cancelled.":
                raise ConversionError("Conversion cancelled by parser")
            
            duration = time.time() - start_time
            logging.info(f"Multiple documents processed in {duration:.2f} seconds")
            
            if self._check_cancellation():
                raise ConversionError("Conversion cancelled")
            
            # Create output file with batch naming
            output_path = self._create_batch_output_file(
                content, output_format, file_paths, processing_type
            )
            
            return content, output_path
            
        except (DocumentProcessingError, FileSizeLimitError, UnsupportedFileTypeError, ConversionError):
            # Re-raise our custom exceptions
            for temp_path in temp_inputs:
                self._safe_delete_file(temp_path)
            self._safe_delete_file(output_path)
            raise
        except Exception as e:
            # Wrap unexpected exceptions
            for temp_path in temp_inputs:
                self._safe_delete_file(temp_path)
            self._safe_delete_file(output_path)
            raise DocumentProcessingError(f"Unexpected error during batch conversion: {str(e)}")
        finally:
            # Clean up temp input files
            for temp_path in temp_inputs:
                self._safe_delete_file(temp_path)
            
            # Clean up output file if cancelled
            if self._check_cancellation() and output_path:
                self._safe_delete_file(output_path)
            
            self._conversion_in_progress = False
    
    def _process_multiple_with_parser(
        self, 
        temp_file_paths: List[str], 
        parser_name: str, 
        ocr_method_name: str, 
        output_format: str,
        processing_type: str
    ) -> str:
        """Process multiple documents using the parser factory."""
        try:
            # Get parser instance
            from src.parsers.parser_registry import ParserRegistry
            parser_class = ParserRegistry.get_parser_class(parser_name)
            
            if not parser_class:
                raise DocumentProcessingError(f"Parser '{parser_name}' not found")
            
            parser_instance = parser_class()
            parser_instance.set_cancellation_flag(self._cancellation_flag)
            
            # Check if parser supports multi-document processing
            if hasattr(parser_instance, 'parse_multiple'):
                # Use multi-document parsing with original filenames for reference
                return parser_instance.parse_multiple(
                    file_paths=temp_file_paths,
                    processing_type=processing_type,
                    ocr_method=ocr_method_name,
                    output_format=output_format.lower(),
                    original_filenames=[Path(fp).name for fp in self._original_file_paths]
                )
            else:
                # Fallback: process individually and combine
                results = []
                for i, file_path in enumerate(temp_file_paths):
                    if self._check_cancellation():
                        return "Conversion cancelled."
                    
                    result = parser_instance.parse(
                        file_path=file_path,
                        ocr_method=ocr_method_name
                    )
                    
                    # Add section header for individual results using original filename
                    original_filename = Path(self._original_file_paths[i]).name
                    results.append(f"# Document {i+1}: {original_filename}\n\n{result}")
                
                return "\n\n---\n\n".join(results)
                
        except Exception as e:
            raise DocumentProcessingError(f"Error processing multiple documents: {str(e)}")
    
    def _create_batch_output_file(
        self, 
        content: str, 
        output_format: str, 
        original_file_paths: List[str],
        processing_type: str
    ) -> str:
        """Create output file for batch processing with descriptive naming."""
        # Determine file extension
        format_extensions = {
            "markdown": ".md",
            "json": ".json", 
            "text": ".txt",
            "document tags": ".doctags"
        }
        ext = format_extensions.get(output_format.lower(), ".txt")
        
        if self._check_cancellation():
            raise ConversionError("Conversion cancelled before output file creation")
        
        # Create descriptive filename for batch processing
        file_count = len(original_file_paths)
        timestamp = time.strftime("%Y%m%d_%H%M%S")
        
        if processing_type == "combined":
            filename = f"Combined_{file_count}_Documents_{timestamp}{ext}"
        elif processing_type == "individual":
            filename = f"Individual_Sections_{file_count}_Files_{timestamp}{ext}"
        elif processing_type == "summary":
            filename = f"Summary_Analysis_{file_count}_Files_{timestamp}{ext}"
        elif processing_type == "comparison":
            filename = f"Comparison_Analysis_{file_count}_Files_{timestamp}{ext}"
        else:
            filename = f"Batch_Processing_{file_count}_Files_{timestamp}{ext}"
        
        # Create output file in temp directory
        temp_dir = tempfile.gettempdir()
        tmp_path = os.path.join(temp_dir, filename)
        
        # Handle filename conflicts
        counter = 1
        base_path = tmp_path
        while os.path.exists(tmp_path):
            name_part = filename.replace(ext, f"_{counter}{ext}")
            tmp_path = os.path.join(temp_dir, name_part)
            counter += 1
        
        # Write content to file
        try:
            with open(tmp_path, "w", encoding="utf-8") as f:
                # Write in chunks with cancellation checks
                chunk_size = 10000  # characters
                for i in range(0, len(content), chunk_size):
                    if self._check_cancellation():
                        self._safe_delete_file(tmp_path)
                        raise ConversionError("Conversion cancelled during output file writing")
                    
                    f.write(content[i:i+chunk_size])
        except Exception as e:
            self._safe_delete_file(tmp_path)
            raise ConversionError(f"Failed to write batch output file: {str(e)}")
        
        return tmp_path