File size: 18,748 Bytes
60444f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edad32d
60444f3
41ad411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55f2687
4018b3c
 
 
 
 
 
 
edad32d
60444f3
 
 
55f2687
60444f3
 
55f2687
5146b66
41ad411
55f2687
41ad411
edad32d
41ad411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edad32d
4018b3c
 
 
 
 
 
edad32d
55f2687
5146b66
 
55f2687
5146b66
 
55f2687
 
5146b66
 
60444f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
from pathlib import Path
from typing import List, Dict, Set, Optional
import torch
from PIL import Image
import numpy as np
from transformers import CLIPProcessor, CLIPModel
from watchdog.observers import Observer
from watchdog.events import FileSystemEventHandler
import asyncio
from concurrent.futures import ThreadPoolExecutor
import threading
from qdrant_client.http.models import PointStruct
import uuid
from qdrant_singleton import QdrantClientSingleton, CURRENT_SCHEMA_VERSION
from fastapi import WebSocket
from enum import Enum
import qdrant_client
import time
from folder_manager import FolderManager
from image_database import ImageDatabase

class IndexingStatus(Enum):
    IDLE = "idle"
    INDEXING = "indexing"
    MONITORING = "monitoring"

class ImageIndexer:
    def __init__(self):
        # Initialize folder manager and image database
        self.folder_manager = FolderManager()
        self.image_db = ImageDatabase()
        
        # Initialize status tracking
        self.status = IndexingStatus.IDLE
        self.current_file: Optional[str] = None
        self.total_files = 0
        self.processed_files = 0
        self.websocket_connections: Set[WebSocket] = set()
        
        # Thread synchronization
        self.collection_initialized = threading.Event()
        self.model_initialized = threading.Event()
        
        # Initialize Qdrant client
        self.qdrant = QdrantClientSingleton.get_instance()
        
        # Thread pool for background processing
        self.executor = ThreadPoolExecutor(max_workers=4)
    
        # Cache of indexed paths per collection
        self.indexed_paths: Dict[str, Set[str]] = {}
        
        # Model initialization flags
        self.model = None
        self.processor = None
        self.device = None
        
        # Start model initialization in a separate thread
        threading.Thread(target=self._initialize_model_thread, daemon=True).start()
    
    def _load_indexed_paths(self, collection_name: str):
        """Load the set of already indexed paths from a collection"""
        try:
            response = self.qdrant.scroll(
                collection_name=collection_name,
                limit=10000,
                with_payload=True,
                with_vectors=False
            )
            self.indexed_paths[collection_name] = {point.payload["path"] for point in response[0]}
        except Exception as e:
            print(f"Error loading indexed paths for collection {collection_name}: {e}")
            self.indexed_paths[collection_name] = set()
    
    async def broadcast_status(self):
        """Broadcast current status to all connected WebSocket clients"""
        status_data = {
            "status": self.status.value,
            "current_file": self.current_file,
            "total_files": self.total_files,
            "processed_files": self.processed_files,
            "progress_percentage": round((self.processed_files / self.total_files * 100) if self.total_files > 0 else 0, 2)
        }
        
        for connection in self.websocket_connections:
            try:
                await connection.send_json(status_data)
            except Exception as e:
                print(f"Error broadcasting to WebSocket: {e}")
                self.websocket_connections.remove(connection)
    
    async def add_websocket_connection(self, websocket: WebSocket):
        """Add a new WebSocket connection"""
        await websocket.accept()
        self.websocket_connections.add(websocket)
        await self.broadcast_status()
    
    async def remove_websocket_connection(self, websocket: WebSocket):
        """Remove a WebSocket connection"""
        self.websocket_connections.remove(websocket)
    
    async def add_folder(self, folder_path: str) -> Dict:
        """Add a new folder to index"""
        folder_info = self.folder_manager.add_folder(folder_path)
        # Start indexing the new folder
        await self.index_folder(folder_path)
        return folder_info
    
    async def remove_folder(self, folder_path: str):
        """Remove a folder from indexing"""
        # First remove from the folder manager
        self.folder_manager.remove_folder(folder_path)
        
        # Clean up SQLite database
        folder_abs_path = str(Path(folder_path).absolute())
        deleted_count = self.image_db.delete_images_by_folder(folder_abs_path)
        print(f"Deleted {deleted_count} images from database for folder: {folder_path}")
    
    async def index_folder(self, folder_path: str):
        """Index all images in a specific folder"""
        if not self.model_initialized.is_set() or not self.model or not self.processor:
            print("Model not initialized. Skipping indexing.")
            self.status = IndexingStatus.IDLE
            await self.broadcast_status()
            return

        folder_path = Path(folder_path)
        if not folder_path.exists():
            print(f"Folder not found: {folder_path}")
            return
        
        collection_name = self.folder_manager.get_collection_for_path(folder_path)
        if not collection_name:
            print(f"No collection found for folder: {folder_path}")
            return
        
        # Wait for model initialization before starting indexing
        while not self.model_initialized.is_set():
            print("Waiting for model initialization...")
            await asyncio.sleep(0.1)
        
        print(f"Starting to index folder: {folder_path}")
        self.status = IndexingStatus.INDEXING
        self.processed_files = 0
        self.current_file = None
        await self.broadcast_status()  # Broadcast initial status
        
        # Load indexed paths for this collection if not already loaded
        if collection_name not in self.indexed_paths:
            self._load_indexed_paths(collection_name)
        
        # Use rglob for recursive directory scanning
        image_files = [f for f in folder_path.rglob("*") if f.suffix.lower() in {".jpg", ".jpeg", ".png", ".gif"}]
        self.total_files = len(image_files)
        print(f"Found {self.total_files} images to index")
        await self.broadcast_status()  # Broadcast after finding total files
        
        try:
            for i, image_file in enumerate(image_files, 1):
                relative_path = str(image_file.relative_to(folder_path))
                self.current_file = str(image_file)
                self.processed_files = i - 1  # Update before processing
                await self.broadcast_status()  # Broadcast before processing each file
                
                if relative_path not in self.indexed_paths[collection_name]:
                    print(f"Indexing image {i}/{self.total_files}: {image_file.name}")
                    await self.index_image(image_file, folder_path)
                else:
                    print(f"Skipping already indexed image {i}/{self.total_files}: {image_file.name}")
                
                self.processed_files = i  # Update after processing
                await self.broadcast_status()  # Broadcast after processing each file
                
                # Small delay to allow other tasks to run
                await asyncio.sleep(0)
        
        except Exception as e:
            print(f"Error during indexing: {e}")
            import traceback
            traceback.print_exc()
        finally:
            # Update last indexed timestamp
            self.folder_manager.update_last_indexed(str(folder_path))
            
            # Reset status
            self.status = IndexingStatus.MONITORING
            self.current_file = None
            await self.broadcast_status()  # Final status broadcast
            print("Finished indexing folder")
    
    async def index_image(self, image_path: Path, root_folder: Path):
        """Index a single image"""
        if not self.model_initialized.is_set() or not self.model or not self.processor:
            print("Model not initialized. Skipping indexing image.")
            return

        try:
            # Wait for model initialization
            while not self.model_initialized.is_set():
                await asyncio.sleep(0.1)
            
            # Get the collection for this path
            collection_name = self.folder_manager.get_collection_for_path(str(root_folder))
            if not collection_name:
                print(f"No collection found for image: {image_path}")
                return
            
            # Convert to relative path from root folder
            try:
                relative_path = str(image_path.relative_to(root_folder))
            except ValueError:
                print(f"Image {image_path} is not under root folder {root_folder}")
                return
            
            print(f"Indexing image: {relative_path}")
            self.current_file = str(image_path)
            await self.broadcast_status()
            
            # Check if image already exists in database
            existing_image_id = self.image_db.image_exists_by_path(relative_path, str(root_folder.absolute()))
            if existing_image_id:
                # Check if it exists in Qdrant with current schema version
                existing_points = self.qdrant.scroll(
                    collection_name=collection_name,
                    scroll_filter=qdrant_client.http.models.Filter(
                        must=[
                            qdrant_client.http.models.FieldCondition(
                                key="image_id",
                                match={"value": existing_image_id}
                            ),
                            qdrant_client.http.models.FieldCondition(
                                key="schema_version",
                                match={"value": CURRENT_SCHEMA_VERSION}
                            )
                        ]
                    ),
                    limit=1
                )[0]
                
                if existing_points:
                    print(f"Skipping {relative_path} - already indexed with current schema version")
                    return
            
            # Store image in SQLite database first
            image_id = self.image_db.store_image(image_path, root_folder)
            if not image_id:
                print(f"Failed to store image in database: {relative_path}")
                return
            
            # Load and preprocess image for embedding
            image = Image.open(image_path).convert("RGB")
            inputs = self.processor(images=image, return_tensors="pt").to(self.device)
            
            # Generate image embedding
            with torch.no_grad():
                image_features = self.model.get_image_features(**inputs)
                # Normalize the features
                image_features = image_features / image_features.norm(dim=-1, keepdim=True)
            
            embedding = image_features.cpu().numpy().flatten()
            
            # Verify embedding is valid
            if np.isnan(embedding).any() or np.isinf(embedding).any():
                print(f"Warning: Invalid embedding generated for {relative_path}")
                return
            
            # Delete any old versions from Qdrant if they exist
            self.qdrant.delete(
                collection_name=collection_name,
                points_selector=qdrant_client.http.models.FilterSelector(
                    filter=qdrant_client.http.models.Filter(
                        must=[
                            qdrant_client.http.models.FieldCondition(
                                key="path",
                                match={"value": relative_path}
                            )
                        ]
                    )
                )
            )
            
            # Store in Qdrant with image ID reference and minimal metadata
            point_id = str(uuid.uuid4())
            self.qdrant.upsert(
                collection_name=collection_name,
                points=[
                    PointStruct(
                        id=point_id,
                        vector=embedding.tolist(),
                        payload={
                            "image_id": image_id,  # Reference to SQLite database
                            "path": relative_path,  # Relative path from root folder
                            "root_folder": str(root_folder.absolute()),  # Store root folder path
                            "schema_version": CURRENT_SCHEMA_VERSION,
                            "indexed_at": int(time.time())
                        }
                    )
                ]
            )
            
            # Update indexed paths cache
            if collection_name not in self.indexed_paths:
                self.indexed_paths[collection_name] = set()
            self.indexed_paths[collection_name].add(relative_path)
            
            print(f"Stored embedding in Qdrant for {relative_path} (Image ID: {image_id})")
            
        except Exception as e:
            print(f"Error indexing image {image_path}: {e}")
            import traceback
            traceback.print_exc()
        finally:
            # Don't reset current_file here as it's managed by index_folder
            await self.broadcast_status()
    
    def _initialize_model_thread(self):
        """Initialize model in a separate thread"""
        try:
            self.device = "cuda" if torch.cuda.is_available() else "cpu"
            print(f"Using device: {self.device}")
            
            print("Loading CLIP model and processor...")
            
            # Set environment variables to avoid tqdm threading issues
            import os
            os.environ["TOKENIZERS_PARALLELISM"] = "false"
            os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "true"
            
            # Load model first, then processor with explicit settings
            self.model = CLIPModel.from_pretrained(
                "openai/clip-vit-base-patch16",
                cache_dir="/tmp/transformers_cache",
                local_files_only=False
            )
            
            self.processor = CLIPProcessor.from_pretrained(
                "openai/clip-vit-base-patch16",
                cache_dir="/tmp/transformers_cache",
                use_fast=False,  # Explicitly use slow processor to avoid compatibility issues
                local_files_only=False
            )
            
            # Move model to device using to_empty() for meta tensors
            try:
                self.model = self.model.to(self.device)
            except NotImplementedError:
                # Handle meta tensor case
                self.model = self.model.to_empty(device=self.device)
                
            self.model.eval()  # Set to evaluation mode
            
            self.model_initialized.set()
            print("Model initialization complete")
            
        except Exception as e:
            print(f"Error initializing model: {e}")
            print("Attempting fallback initialization...")
            try:
                # Simplest possible fallback with offline-first approach
                import torch
                torch.hub.set_dir('/tmp/torch_cache')
                
                # Try loading without any extra parameters first
                try:
                    self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
                    self.processor = CLIPProcessor.from_pretrained(
                        "openai/clip-vit-base-patch16",
                        use_fast=False
                    )
                except Exception:
                    # If that fails, try with cache directory
                    self.model = CLIPModel.from_pretrained(
                        "openai/clip-vit-base-patch16",
                        cache_dir="/tmp/transformers_cache"
                    )
                    self.processor = CLIPProcessor.from_pretrained(
                        "openai/clip-vit-base-patch16", 
                        cache_dir="/tmp/transformers_cache",
                        use_fast=False
                    )
                
                # Handle meta tensor case in fallback too
                try:
                    self.model = self.model.to(self.device)
                except NotImplementedError:
                    self.model = self.model.to_empty(device=self.device)
                    
                self.model.eval()
                
                self.model_initialized.set()
                print("Fallback model initialization successful")
                
            except Exception as e2:
                print(f"Fallback also failed: {e2}")
                print("Model initialization completely failed - indexing functionality will be disabled")
            
            import traceback
            traceback.print_exc()
            self.status = IndexingStatus.IDLE
            asyncio.run(self.broadcast_status())
    
    async def get_all_images(self, folder_path: Optional[str] = None) -> List[Dict]:
        """Get all indexed images, optionally filtered by folder"""
        try:
            if folder_path:
                # Get images from specific folder
                results = self.image_db.get_images_by_folder(str(Path(folder_path).absolute()))
            else:
                # Get images from all folders
                results = self.image_db.get_all_images()
            
            # Convert to API format
            api_results = []
            for image_data in results:
                api_results.append({
                    "id": image_data["id"],
                    "path": image_data["relative_path"],
                    "filename": image_data["filename"],
                    "root_folder": image_data["root_folder"],
                    "file_size": image_data["file_size"],
                    "width": image_data["width"],
                    "height": image_data["height"],
                    "created_at": image_data["created_at"]
                })
            
            return api_results
            
        except Exception as e:
            print(f"Error getting images: {e}")
            import traceback
            traceback.print_exc()
            return []
class ImageEventHandler(FileSystemEventHandler):
    def __init__(self, indexer: ImageIndexer, root_folder: Path):
        self.indexer = indexer
        self.root_folder = root_folder
    
    def on_created(self, event):
        if not event.is_directory:
            asyncio.create_task(self.indexer.index_image(Path(event.src_path), self.root_folder))