File size: 3,763 Bytes
6216ecd
 
 
 
edb1d95
6216ecd
 
 
 
 
edb1d95
6216ecd
edb1d95
 
 
 
 
 
6216ecd
 
 
 
edb1d95
 
 
6216ecd
 
edb1d95
6216ecd
8a74fe1
 
87c4a7b
edb1d95
6216ecd
 
edb1d95
 
6216ecd
edb1d95
 
 
 
 
 
 
 
 
 
6216ecd
edb1d95
 
 
6216ecd
 
 
edb1d95
 
6216ecd
 
edb1d95
 
6216ecd
 
edb1d95
 
6216ecd
 
edb1d95
 
6216ecd
edb1d95
 
 
 
 
 
 
 
 
 
 
6216ecd
 
edb1d95
 
6216ecd
 
 
 
 
edb1d95
 
 
 
6216ecd
 
edb1d95
 
 
6216ecd
edb1d95
 
 
 
 
 
 
 
6216ecd
34eb6c0
 
edb1d95
 
 
 
 
 
 
 
 
 
 
34eb6c0
edb1d95
 
34eb6c0
 
 
edb1d95
34eb6c0
edb1d95
 
 
 
 
 
 
34eb6c0
edb1d95
 
34eb6c0
edb1d95
 
 
 
 
 
 
34eb6c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from src.utils.config_loader import constants
from huggingface_hub import snapshot_download
from zipfile import ZipFile
import numpy as np
import os, shutil
import matplotlib.pyplot as plt
import cv2
import math


def download_hf_dataset(repo_id, allow_patterns=None):
    """Used to download dataset from any public hugging face dataset"""
    snapshot_download(
        repo_id=repo_id,
        repo_type="dataset",
        local_dir=constants.RAW_DATASET_DIR,
        allow_patterns=allow_patterns,
    )


def download_personal_hf_dataset(name):
    """Used to download dataset from a specific hugging face dataset"""
    download_hf_dataset(
        repo_id="Anuj-Panthri/Image-Colorization-Datasets", allow_patterns=f"{name}/*"
    )


def unzip_file(file_path, destination_dir):
    """unzips file to destination_dir"""
    if os.path.exists(destination_dir):
        shutil.rmtree(destination_dir)
    os.makedirs(destination_dir)
    with ZipFile(file_path, "r") as zip:
        zip.extractall(destination_dir)


def is_bw(img: np.ndarray):
    """checks if RGB image is black and white"""
    rg, gb, rb = (
        img[:, :, 0] - img[:, :, 1],
        img[:, :, 1] - img[:, :, 2],
        img[:, :, 0] - img[:, :, 2],
    )
    rg, gb, rb = np.abs(rg).sum(), np.abs(gb).sum(), np.abs(rb).sum()
    avg = np.mean([rg, gb, rb])

    return avg < 10


def print_title(msg: str, max_chars=105):
    n = (max_chars - len(msg)) // 2
    print("=" * n, msg.upper(), "=" * n, sep="")


def scale_L(L):
    return L / 100


def rescale_L(L):
    return L * 100


def scale_AB(AB):
    return AB / 128


def rescale_AB(AB):
    return AB * 128


def show_images_from_paths(
    image_paths: list[str],
    image_size=64,
    cols=4,
    row_size=5,
    col_size=5,
    show_BW=False,
    title=None,
    save=False,
    label="",
):

    n = len(image_paths)
    rows = math.ceil(n / cols)
    fig = plt.figure(figsize=(col_size * cols, row_size * rows))
    if title:
        plt.title(title)
    plt.axis("off")

    for i in range(n):
        fig.add_subplot(rows, cols, i + 1)

        img = cv2.imread(image_paths[i])[:, :, ::-1]
        img = cv2.resize(img, [image_size, image_size])

        if show_BW:
            BW = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
            BW = np.tile(BW, (1, 1, 3))
            img = np.concatenate([BW, img], axis=1)
        plt.imshow(img.astype("uint8"))

    if save:
        os.makedirs(constants.ARTIFACT_DATASET_VISUALIZATION_DIR, exist_ok=True)
        plt.savefig(
            os.path.join(
                constants.ARTIFACT_DATASET_VISUALIZATION_DIR, f"{label}_image.png"
            )
        )
    plt.show()


def see_batch(
    L_batch,
    AB_batch,
    show_L=False,
    cols=4,
    row_size=5,
    col_size=5,
    title=None,
    save=False,
    label="",
):
    n = L_batch.shape[0]
    rows = math.ceil(n / cols)
    fig = plt.figure(figsize=(col_size * cols, row_size * rows))
    if title:
        plt.title(title)
    plt.axis("off")

    for i in range(n):
        fig.add_subplot(rows, cols, i + 1)
        L, AB = L_batch[i], AB_batch[i]
        L, AB = rescale_L(L), rescale_AB(AB)
        #         print(L.shape,AB.shape)
        img = np.concatenate([L, AB], axis=-1)
        img = cv2.cvtColor(img, cv2.COLOR_LAB2RGB) * 255
        #         print(img.min(),img.max())
        if show_L:
            L = np.tile(L, (1, 1, 3)) / 100 * 255
            img = np.concatenate([L, img], axis=1)
        plt.imshow(img.astype("uint8"))
    if save:
        os.makedirs(constants.ARTIFACT_RESULT_VISUALIZATION_DIR, exist_ok=True)
        plt.savefig(
            os.path.join(
                constants.ARTIFACT_RESULT_VISUALIZATION_DIR, f"{label}_image.png"
            )
        )
    plt.show()