Spaces:
Sleeping
Sleeping
File size: 13,952 Bytes
a48ff71 a4dfe81 a48ff71 a4dfe81 cf81d54 a4dfe81 a48ff71 a4dfe81 a48ff71 a4dfe81 add652a a48ff71 a4dfe81 a48ff71 cf81d54 a48ff71 a4dfe81 cf81d54 a48ff71 a4dfe81 a48ff71 a4dfe81 a48ff71 a4dfe81 a48ff71 a4dfe81 a48ff71 a4dfe81 a48ff71 a4dfe81 a48ff71 add652a a48ff71 add652a a48ff71 add652a a48ff71 a4dfe81 cf81d54 add652a cf81d54 a48ff71 a4dfe81 add652a a48ff71 a4dfe81 add652a a48ff71 a4dfe81 a48ff71 a4dfe81 a48ff71 a4dfe81 a48ff71 a4dfe81 a48ff71 a4dfe81 a48ff71 a4dfe81 a48ff71 add652a a48ff71 add652a a4dfe81 a48ff71 a4dfe81 a48ff71 cf81d54 a48ff71 cf81d54 add652a a48ff71 add652a a4dfe81 a48ff71 a4dfe81 a48ff71 a4dfe81 a48ff71 add652a a48ff71 add652a a48ff71 a4dfe81 a48ff71 cf81d54 a48ff71 a4dfe81 a48ff71 a4dfe81 a48ff71 a4dfe81 a48ff71 a4dfe81 cf81d54 a48ff71 a4dfe81 a48ff71 a4dfe81 a48ff71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
from datasets import load_dataset
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
from difflib import get_close_matches
from typing import Optional, Dict, Any
import json
import io
import os
# Configuration (unchanged)
INSULIN_TYPES = {
"Rapid-Acting": {"onset": 0.25, "duration": 4, "peak_time": 1.0},
"Long-Acting": {"onset": 2, "duration": 24, "peak_time": 8},
}
DEFAULT_BASAL_RATES = {
"00:00-06:00": 0.8,
"06:00-12:00": 1.0,
"12:00-18:00": 0.9,
"18:00-24:00": 0.7
}
GI_RANGES = {
"low": (0, 55),
"medium": (56, 69),
"high": (70, 100)
}
# Utility Functions (mostly unchanged)
def estimate_gi_timing(gi_value: Optional[int]) -> tuple[float, float]:
if gi_value is None:
return 1.0, 2.5
if gi_value <= 55:
return 1.0, 3.0
elif 56 <= gi_value <= 69:
return 0.75, 2.0
else:
return 0.5, 1.5
def load_food_data():
try:
ds = load_dataset("Anupam007/diabetic-food-analyzer")
food_data = pd.DataFrame(ds['train'])
food_data.columns = [col.lower().strip() for col in food_data.columns]
food_data['food_name'] = food_data['food_name'].str.lower().str.strip()
return food_data
except Exception as e:
print(f"Error loading food data: {e}")
return pd.DataFrame()
try:
processor = AutoImageProcessor.from_pretrained("rajistics/finetuned-indian-food")
model = AutoModelForImageClassification.from_pretrained("rajistics/finetuned-indian-food")
model_loaded = True
except Exception as e:
print(f"Model Load Error: {e}")
model_loaded = False
processor = None
model = None
def classify_food(image):
if not model_loaded or image is None:
return "unknown"
try:
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_idx = torch.argmax(outputs.logits, dim=-1).item()
food_name = model.config.id2label.get(predicted_idx, "unknown").lower()
return food_name
except Exception as e:
print(f"Classify food error: {e}")
return "unknown"
def get_food_nutrition(food_name: str, food_data: pd.DataFrame, weight_grams: Optional[float] = None) -> tuple[Optional[Dict[str, Any]], str]:
food_name_lower = food_name.lower().strip()
matches = get_close_matches(food_name_lower, food_data['food_name'].tolist(), n=1, cutoff=0.6)
correction_note = ""
if matches:
corrected_name = matches[0]
if corrected_name != food_name_lower:
correction_note = f"Note: '{food_name}' corrected to '{corrected_name}'"
matched_row = food_data[food_data['food_name'] == corrected_name].iloc[0]
base_carbs = float(matched_row.get('unit_serving_carb_g', matched_row.get('carb_g', 0.0)))
serving_size = matched_row.get('servings_unit', 'unknown')
gi_value = matched_row.get('glycemic_index', None)
if pd.isna(gi_value):
gi_value = None
else:
try:
gi_value = int(float(gi_value))
except (ValueError, TypeError):
gi_value = None
if weight_grams and serving_size != 'unknown':
try:
serving_weight = float(matched_row.get('serving_weight_grams', 100))
portion_size = weight_grams / serving_weight
except (ValueError, TypeError):
portion_size = 1.0
else:
portion_size = 1.0
adjusted_carbs = base_carbs * portion_size
nutrition_info = {
'matched_food': matched_row['food_name'],
'category': matched_row.get('primarysource', 'unknown'),
'subcategory': 'unknown',
'base_carbs': base_carbs,
'adjusted_carbs': adjusted_carbs,
'serving_size': f"1 {serving_size}",
'portion_multiplier': portion_size,
'notes': 'none',
'glycemic_index': gi_value
}
return nutrition_info, correction_note
return None, f"No close match found for '{food_name}'"
def determine_gi_level(gi_value: Optional[int]) -> str:
if gi_value is None:
return "Unknown"
for level, (lower, upper) in GI_RANGES.items():
if lower <= gi_value <= upper:
return level.capitalize()
return "Unknown"
def get_basal_rate(current_time_hour: float, basal_rates: Dict[str, float]) -> float:
for interval, rate in basal_rates.items():
try:
start, end = [int(x.split(':')[0]) for x in interval.split('-')]
if start <= current_time_hour < end or (start <= current_time_hour and end == 24):
return rate
except Exception as e:
print(f"Invalid basal interval {interval}: {e}")
return 0.8
def insulin_activity(t: float, insulin_type: str, bolus_dose: float, bolus_duration: float = 0) -> float:
insulin_data = INSULIN_TYPES.get(insulin_type, INSULIN_TYPES["Rapid-Acting"])
peak_time = insulin_data['peak_time']
duration = insulin_data['duration']
if bolus_duration > 0:
if 0 <= t <= bolus_duration:
return bolus_dose / bolus_duration
return 0
if t < 0:
return 0
elif t < peak_time:
return bolus_dose * (t / peak_time) * np.exp(1 - t/peak_time)
elif t < duration:
return bolus_dose * np.exp((peak_time - t) / (duration - peak_time))
return 0
def calculate_active_insulin(insulin_history: list, current_time: float) -> float:
return sum(insulin_activity(current_time - dose_time, insulin_type, dose_amount, bolus_duration)
for dose_time, dose_amount, insulin_type, bolus_duration in insulin_history)
def calculate_insulin_needs(carbs: float, glucose_current: float, glucose_target: float,
tdd: float, weight: float, insulin_type: str = "Rapid-Acting",
override_correction_dose: Optional[float] = None) -> Dict[str, Any]:
if tdd <= 0 or weight <= 0:
return {'error': 'TDD and weight must be positive'}
insulin_data = INSULIN_TYPES.get(insulin_type, INSULIN_TYPES["Rapid-Acting"])
icr = 400 / tdd
isf = 1700 / tdd
correction_dose = (glucose_current - glucose_target) / isf if override_correction_dose is None else override_correction_dose
carb_dose = carbs / icr
total_bolus = max(0, carb_dose + correction_dose)
basal_dose = weight * 0.5
return {
'icr': round(icr, 2),
'isf': round(isf, 2),
'correction_dose': round(correction_dose, 2),
'carb_dose': round(carb_dose, 2),
'total_bolus': round(total_bolus, 2),
'basal_dose': round(basal_dose, 2),
'insulin_type': insulin_type,
'insulin_onset': insulin_data['onset'],
'insulin_duration': insulin_data['duration'],
'peak_time': insulin_data['peak_time']
}
def create_detailed_report(nutrition_info: Dict[str, Any], insulin_info: Dict[str, Any],
current_basal_rate: float, correction_note: str) -> tuple[str, str, str]:
gi_level = determine_gi_level(nutrition_info.get('glycemic_index'))
peak_time, duration = estimate_gi_timing(nutrition_info.get('glycemic_index'))
glucose_meal_details = f"""
GLUCOSE & MEAL DETAILS:
- Detected Food: {nutrition_info['matched_food']}
- Category: {nutrition_info['category']}
- Glycemic Index: {nutrition_info.get('glycemic_index', 'N/A')} ({gi_level})
- Peak Glucose Time: {peak_time} hours
- Glucose Effect Duration: {duration} hours
- Serving Size: {nutrition_info['serving_size']}
- Carbs per Serving: {nutrition_info['base_carbs']}g
- Portion Multiplier: {nutrition_info['portion_multiplier']}x
- Total Carbs: {nutrition_info['adjusted_carbs']}g
{correction_note}
"""
insulin_details = f"""
INSULIN DETAILS:
- ICR: 1:{insulin_info['icr']}
- ISF: 1:{insulin_info['isf']}
- Insulin Type: {insulin_info['insulin_type']}
- Onset: {insulin_info['insulin_onset']}h
- Duration: {insulin_info['insulin_duration']}h
- Peak: {insulin_info['peak_time']}h
- Correction Dose: {insulin_info['correction_dose']} units
- Carb Dose: {insulin_info['carb_dose']} units
- Total Bolus: {insulin_info['total_bolus']} units
"""
basal_details = f"""
BASAL SETTINGS:
- Basal Dose: {insulin_info['basal_dose']} units/day
- Current Basal Rate: {current_basal_rate} units/h
"""
return glucose_meal_details, insulin_details, basal_details
# Modified Main Dashboard
def diabetes_dashboard(initial_glucose, food_image, food_name_input, weight_grams,
insulin_type, override_correction_dose, extended_bolus_duration,
weight, tdd, target_glucose, basal_rates_input,
stress_level, sleep_hours, exercise_duration, exercise_intensity, time_hours):
food_data = load_food_data()
if food_data.empty:
return "Error loading food data", None, None, None, None
if food_name_input and food_name_input.strip():
food_name = food_name_input.strip()
else:
food_name = classify_food(food_image)
nutrition_info, correction_note = get_food_nutrition(food_name, food_data, weight_grams)
if not nutrition_info:
return correction_note, None, None, None, None
try:
basal_rates = json.loads(basal_rates_input)
except:
basal_rates = DEFAULT_BASAL_RATES
insulin_info = calculate_insulin_needs(
nutrition_info['adjusted_carbs'], initial_glucose, target_glucose,
tdd, weight, insulin_type, override_correction_dose
)
if 'error' in insulin_info:
return insulin_info['error'], None, None, None, None
current_basal_rate = get_basal_rate(12, basal_rates)
glucose_meal_details, insulin_details, basal_details = create_detailed_report(nutrition_info, insulin_info, current_basal_rate, correction_note)
hours = list(range(time_hours))
glucose_levels = []
current_glucose = initial_glucose
insulin_history = [(0, insulin_info['total_bolus'], insulin_type, extended_bolus_duration)]
for t in hours:
carb_effect = nutrition_info['adjusted_carbs'] * 0.1 * np.exp(-(t - 1.5) ** 2 / 2)
insulin_effect = calculate_active_insulin(insulin_history, t)
basal_effect = get_basal_rate(t, basal_rates)
stress_effect = stress_level * 2
sleep_effect = abs(8 - sleep_hours) * 5
exercise_effect = (exercise_duration / 60) * exercise_intensity * 2
current_glucose += carb_effect - insulin_effect - basal_effect + stress_effect + sleep_effect - exercise_effect
glucose_levels.append(max(70, min(400, current_glucose)))
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(hours, glucose_levels, 'b-', label='Predicted Glucose')
ax.axhline(y=target_glucose, color='g', linestyle='--', label='Target')
ax.fill_between(hours, 70, 180, alpha=0.1, color='g', label='Target Range')
ax.set_xlabel('Hours')
ax.set_ylabel('Glucose (mg/dL)')
ax.legend()
ax.grid(True)
return glucose_meal_details, insulin_details, basal_details, insulin_info['total_bolus'], fig
# Gradio Interface (unchanged)
with gr.Blocks(title="Type 1 Diabetes Management Dashboard") as app:
gr.Markdown("# Type 1 Diabetes Management Dashboard")
with gr.Tab("Glucose & Meal"):
initial_glucose = gr.Number(label="Current Glucose (mg/dL)", value=120)
target_glucose = gr.Number(label="Target Glucose (mg/dL)", value=100)
food_name_input = gr.Textbox(label="Food Name (optional)", placeholder="Enter food name manually")
weight_grams = gr.Number(label="Weight (grams, optional)", value=None)
food_image = gr.Image(label="Food Image (optional)", type="pil")
glucose_meal_output = gr.Textbox(label="Glucose & Meal Details", lines=10)
with gr.Tab("Insulin"):
insulin_type = gr.Dropdown(list(INSULIN_TYPES.keys()), label="Insulin Type", value="Rapid-Acting")
override_correction_dose = gr.Number(label="Override Correction Dose (units)", value=None)
extended_bolus_duration = gr.Number(label="Extended Bolus Duration (h)", value=0)
weight = gr.Number(label="Weight (kg)", value=70)
tdd = gr.Number(label="Total Daily Dose (units)", value=40)
insulin_output = gr.Textbox(label="Insulin Details", lines=10)
bolus_output = gr.Number(label="Bolus Dose (units)")
with gr.Tab("Basal Settings"):
basal_rates_input = gr.Textbox(label="Basal Rates (JSON)", value=json.dumps(DEFAULT_BASAL_RATES), lines=2)
basal_output = gr.Textbox(label="Basal Settings", lines=4)
with gr.Tab("Other Factors"):
stress_level = gr.Slider(1, 10, step=1, label="Stress Level", value=1)
sleep_hours = gr.Number(label="Sleep Hours", value=7)
exercise_duration = gr.Number(label="Exercise Duration (min)", value=0)
exercise_intensity = gr.Slider(1, 10, step=1, label="Exercise Intensity", value=1)
time_hours = gr.Slider(1, 24, step=1, label="Prediction Time (h)", value=6)
plot_output = gr.Plot(label="Glucose Prediction")
calculate_btn = gr.Button("Calculate")
calculate_btn.click(
diabetes_dashboard,
inputs=[
initial_glucose, food_image, food_name_input, weight_grams,
insulin_type, override_correction_dose, extended_bolus_duration,
weight, tdd, target_glucose, basal_rates_input,
stress_level, sleep_hours, exercise_duration, exercise_intensity, time_hours
],
outputs=[glucose_meal_output, insulin_output, basal_output, bolus_output, plot_output]
)
if __name__ == "__main__":
app.launch() |