File size: 13,952 Bytes
a48ff71
a4dfe81
 
 
 
 
 
 
 
 
 
 
a48ff71
a4dfe81
cf81d54
a4dfe81
a48ff71
a4dfe81
 
 
 
 
 
 
 
 
 
a48ff71
 
 
 
 
a4dfe81
add652a
a48ff71
 
 
 
 
 
 
 
 
a4dfe81
a48ff71
 
 
cf81d54
a48ff71
 
a4dfe81
 
cf81d54
a48ff71
a4dfe81
a48ff71
a4dfe81
 
a48ff71
a4dfe81
a48ff71
a4dfe81
 
 
 
 
a48ff71
 
a4dfe81
 
 
 
 
a48ff71
a4dfe81
 
a48ff71
 
 
add652a
a48ff71
 
add652a
a48ff71
 
add652a
 
 
 
a48ff71
 
 
 
 
 
 
 
 
 
a4dfe81
cf81d54
 
add652a
cf81d54
 
 
 
 
 
a48ff71
a4dfe81
add652a
a48ff71
 
 
 
 
 
 
 
 
a4dfe81
add652a
 
a48ff71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4dfe81
a48ff71
 
 
a4dfe81
a48ff71
 
 
 
 
a4dfe81
a48ff71
 
 
a4dfe81
a48ff71
a4dfe81
 
 
 
 
 
 
 
 
 
 
 
 
 
a48ff71
a4dfe81
 
a48ff71
add652a
a48ff71
 
 
 
 
 
 
 
 
 
 
 
 
 
add652a
a4dfe81
 
 
a48ff71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4dfe81
 
a48ff71
 
cf81d54
 
a48ff71
 
 
 
 
 
 
cf81d54
 
 
 
 
add652a
a48ff71
 
add652a
a4dfe81
 
a48ff71
 
 
a4dfe81
a48ff71
 
 
 
a4dfe81
a48ff71
 
 
 
add652a
a48ff71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
add652a
a48ff71
a4dfe81
 
 
a48ff71
 
cf81d54
 
 
a48ff71
a4dfe81
 
a48ff71
 
 
 
 
 
 
a4dfe81
 
a48ff71
 
a4dfe81
 
a48ff71
 
 
 
 
 
 
 
 
 
 
a4dfe81
cf81d54
a48ff71
 
 
a4dfe81
a48ff71
a4dfe81
 
 
a48ff71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
from datasets import load_dataset
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
from difflib import get_close_matches
from typing import Optional, Dict, Any
import json
import io
import os

# Configuration (unchanged)
INSULIN_TYPES = {
    "Rapid-Acting": {"onset": 0.25, "duration": 4, "peak_time": 1.0},
    "Long-Acting": {"onset": 2, "duration": 24, "peak_time": 8},
}

DEFAULT_BASAL_RATES = {
    "00:00-06:00": 0.8,
    "06:00-12:00": 1.0,
    "12:00-18:00": 0.9,
    "18:00-24:00": 0.7
}

GI_RANGES = {
    "low": (0, 55),
    "medium": (56, 69),
    "high": (70, 100)
}

# Utility Functions (mostly unchanged)
def estimate_gi_timing(gi_value: Optional[int]) -> tuple[float, float]:
    if gi_value is None:
        return 1.0, 2.5
    if gi_value <= 55:
        return 1.0, 3.0
    elif 56 <= gi_value <= 69:
        return 0.75, 2.0
    else:
        return 0.5, 1.5

def load_food_data():
    try:
        ds = load_dataset("Anupam007/diabetic-food-analyzer")
        food_data = pd.DataFrame(ds['train'])
        food_data.columns = [col.lower().strip() for col in food_data.columns]
        food_data['food_name'] = food_data['food_name'].str.lower().str.strip()
        return food_data
    except Exception as e:
        print(f"Error loading food data: {e}")
        return pd.DataFrame()

try:
    processor = AutoImageProcessor.from_pretrained("rajistics/finetuned-indian-food")
    model = AutoModelForImageClassification.from_pretrained("rajistics/finetuned-indian-food")
    model_loaded = True
except Exception as e:
    print(f"Model Load Error: {e}")
    model_loaded = False
    processor = None
    model = None

def classify_food(image):
    if not model_loaded or image is None:
        return "unknown"
    try:
        inputs = processor(images=image, return_tensors="pt")
        with torch.no_grad():
            outputs = model(**inputs)
        predicted_idx = torch.argmax(outputs.logits, dim=-1).item()
        food_name = model.config.id2label.get(predicted_idx, "unknown").lower()
        return food_name
    except Exception as e:
        print(f"Classify food error: {e}")
        return "unknown"

def get_food_nutrition(food_name: str, food_data: pd.DataFrame, weight_grams: Optional[float] = None) -> tuple[Optional[Dict[str, Any]], str]:
    food_name_lower = food_name.lower().strip()
    matches = get_close_matches(food_name_lower, food_data['food_name'].tolist(), n=1, cutoff=0.6)
    correction_note = ""

    if matches:
        corrected_name = matches[0]
        if corrected_name != food_name_lower:
            correction_note = f"Note: '{food_name}' corrected to '{corrected_name}'"
        matched_row = food_data[food_data['food_name'] == corrected_name].iloc[0]
        base_carbs = float(matched_row.get('unit_serving_carb_g', matched_row.get('carb_g', 0.0)))
        serving_size = matched_row.get('servings_unit', 'unknown')
        gi_value = matched_row.get('glycemic_index', None)
        if pd.isna(gi_value):
            gi_value = None
        else:
            try:
                gi_value = int(float(gi_value))
            except (ValueError, TypeError):
                gi_value = None

        if weight_grams and serving_size != 'unknown':
            try:
                serving_weight = float(matched_row.get('serving_weight_grams', 100))
                portion_size = weight_grams / serving_weight
            except (ValueError, TypeError):
                portion_size = 1.0
        else:
            portion_size = 1.0

        adjusted_carbs = base_carbs * portion_size

        nutrition_info = {
            'matched_food': matched_row['food_name'],
            'category': matched_row.get('primarysource', 'unknown'),
            'subcategory': 'unknown',
            'base_carbs': base_carbs,
            'adjusted_carbs': adjusted_carbs,
            'serving_size': f"1 {serving_size}",
            'portion_multiplier': portion_size,
            'notes': 'none',
            'glycemic_index': gi_value
        }
        return nutrition_info, correction_note
    return None, f"No close match found for '{food_name}'"

def determine_gi_level(gi_value: Optional[int]) -> str:
    if gi_value is None:
        return "Unknown"
    for level, (lower, upper) in GI_RANGES.items():
        if lower <= gi_value <= upper:
            return level.capitalize()
    return "Unknown"

def get_basal_rate(current_time_hour: float, basal_rates: Dict[str, float]) -> float:
    for interval, rate in basal_rates.items():
        try:
            start, end = [int(x.split(':')[0]) for x in interval.split('-')]
            if start <= current_time_hour < end or (start <= current_time_hour and end == 24):
                return rate
        except Exception as e:
            print(f"Invalid basal interval {interval}: {e}")
    return 0.8

def insulin_activity(t: float, insulin_type: str, bolus_dose: float, bolus_duration: float = 0) -> float:
    insulin_data = INSULIN_TYPES.get(insulin_type, INSULIN_TYPES["Rapid-Acting"])
    peak_time = insulin_data['peak_time']
    duration = insulin_data['duration']

    if bolus_duration > 0:
        if 0 <= t <= bolus_duration:
            return bolus_dose / bolus_duration
        return 0

    if t < 0:
        return 0
    elif t < peak_time:
        return bolus_dose * (t / peak_time) * np.exp(1 - t/peak_time)
    elif t < duration:
        return bolus_dose * np.exp((peak_time - t) / (duration - peak_time))
    return 0

def calculate_active_insulin(insulin_history: list, current_time: float) -> float:
    return sum(insulin_activity(current_time - dose_time, insulin_type, dose_amount, bolus_duration)
              for dose_time, dose_amount, insulin_type, bolus_duration in insulin_history)

def calculate_insulin_needs(carbs: float, glucose_current: float, glucose_target: float,
                          tdd: float, weight: float, insulin_type: str = "Rapid-Acting",
                          override_correction_dose: Optional[float] = None) -> Dict[str, Any]:
    if tdd <= 0 or weight <= 0:
        return {'error': 'TDD and weight must be positive'}

    insulin_data = INSULIN_TYPES.get(insulin_type, INSULIN_TYPES["Rapid-Acting"])
    icr = 400 / tdd
    isf = 1700 / tdd

    correction_dose = (glucose_current - glucose_target) / isf if override_correction_dose is None else override_correction_dose
    carb_dose = carbs / icr
    total_bolus = max(0, carb_dose + correction_dose)
    basal_dose = weight * 0.5

    return {
        'icr': round(icr, 2),
        'isf': round(isf, 2),
        'correction_dose': round(correction_dose, 2),
        'carb_dose': round(carb_dose, 2),
        'total_bolus': round(total_bolus, 2),
        'basal_dose': round(basal_dose, 2),
        'insulin_type': insulin_type,
        'insulin_onset': insulin_data['onset'],
        'insulin_duration': insulin_data['duration'],
        'peak_time': insulin_data['peak_time']
    }

def create_detailed_report(nutrition_info: Dict[str, Any], insulin_info: Dict[str, Any],
                         current_basal_rate: float, correction_note: str) -> tuple[str, str, str]:
    gi_level = determine_gi_level(nutrition_info.get('glycemic_index'))
    peak_time, duration = estimate_gi_timing(nutrition_info.get('glycemic_index'))

    glucose_meal_details = f"""
    GLUCOSE & MEAL DETAILS:
    - Detected Food: {nutrition_info['matched_food']}
    - Category: {nutrition_info['category']}
    - Glycemic Index: {nutrition_info.get('glycemic_index', 'N/A')} ({gi_level})
    - Peak Glucose Time: {peak_time} hours
    - Glucose Effect Duration: {duration} hours
    - Serving Size: {nutrition_info['serving_size']}
    - Carbs per Serving: {nutrition_info['base_carbs']}g
    - Portion Multiplier: {nutrition_info['portion_multiplier']}x
    - Total Carbs: {nutrition_info['adjusted_carbs']}g
    {correction_note}
    """

    insulin_details = f"""
    INSULIN DETAILS:
    - ICR: 1:{insulin_info['icr']}
    - ISF: 1:{insulin_info['isf']}
    - Insulin Type: {insulin_info['insulin_type']}
    - Onset: {insulin_info['insulin_onset']}h
    - Duration: {insulin_info['insulin_duration']}h
    - Peak: {insulin_info['peak_time']}h
    - Correction Dose: {insulin_info['correction_dose']} units
    - Carb Dose: {insulin_info['carb_dose']} units
    - Total Bolus: {insulin_info['total_bolus']} units
    """

    basal_details = f"""
    BASAL SETTINGS:
    - Basal Dose: {insulin_info['basal_dose']} units/day
    - Current Basal Rate: {current_basal_rate} units/h
    """

    return glucose_meal_details, insulin_details, basal_details

# Modified Main Dashboard
def diabetes_dashboard(initial_glucose, food_image, food_name_input, weight_grams,
                     insulin_type, override_correction_dose, extended_bolus_duration,
                     weight, tdd, target_glucose, basal_rates_input,
                     stress_level, sleep_hours, exercise_duration, exercise_intensity, time_hours):
    food_data = load_food_data()
    if food_data.empty:
        return "Error loading food data", None, None, None, None

    if food_name_input and food_name_input.strip():
        food_name = food_name_input.strip()
    else:
        food_name = classify_food(food_image)

    nutrition_info, correction_note = get_food_nutrition(food_name, food_data, weight_grams)

    if not nutrition_info:
        return correction_note, None, None, None, None

    try:
        basal_rates = json.loads(basal_rates_input)
    except:
        basal_rates = DEFAULT_BASAL_RATES

    insulin_info = calculate_insulin_needs(
        nutrition_info['adjusted_carbs'], initial_glucose, target_glucose,
        tdd, weight, insulin_type, override_correction_dose
    )

    if 'error' in insulin_info:
        return insulin_info['error'], None, None, None, None

    current_basal_rate = get_basal_rate(12, basal_rates)
    glucose_meal_details, insulin_details, basal_details = create_detailed_report(nutrition_info, insulin_info, current_basal_rate, correction_note)

    hours = list(range(time_hours))
    glucose_levels = []
    current_glucose = initial_glucose
    insulin_history = [(0, insulin_info['total_bolus'], insulin_type, extended_bolus_duration)]

    for t in hours:
        carb_effect = nutrition_info['adjusted_carbs'] * 0.1 * np.exp(-(t - 1.5) ** 2 / 2)
        insulin_effect = calculate_active_insulin(insulin_history, t)
        basal_effect = get_basal_rate(t, basal_rates)
        stress_effect = stress_level * 2
        sleep_effect = abs(8 - sleep_hours) * 5
        exercise_effect = (exercise_duration / 60) * exercise_intensity * 2

        current_glucose += carb_effect - insulin_effect - basal_effect + stress_effect + sleep_effect - exercise_effect
        glucose_levels.append(max(70, min(400, current_glucose)))

    fig, ax = plt.subplots(figsize=(10, 5))
    ax.plot(hours, glucose_levels, 'b-', label='Predicted Glucose')
    ax.axhline(y=target_glucose, color='g', linestyle='--', label='Target')
    ax.fill_between(hours, 70, 180, alpha=0.1, color='g', label='Target Range')
    ax.set_xlabel('Hours')
    ax.set_ylabel('Glucose (mg/dL)')
    ax.legend()
    ax.grid(True)

    return glucose_meal_details, insulin_details, basal_details, insulin_info['total_bolus'], fig

# Gradio Interface (unchanged)
with gr.Blocks(title="Type 1 Diabetes Management Dashboard") as app:
    gr.Markdown("# Type 1 Diabetes Management Dashboard")

    with gr.Tab("Glucose & Meal"):
        initial_glucose = gr.Number(label="Current Glucose (mg/dL)", value=120)
        target_glucose = gr.Number(label="Target Glucose (mg/dL)", value=100)
        food_name_input = gr.Textbox(label="Food Name (optional)", placeholder="Enter food name manually")
        weight_grams = gr.Number(label="Weight (grams, optional)", value=None)
        food_image = gr.Image(label="Food Image (optional)", type="pil")
        glucose_meal_output = gr.Textbox(label="Glucose & Meal Details", lines=10)

    with gr.Tab("Insulin"):
        insulin_type = gr.Dropdown(list(INSULIN_TYPES.keys()), label="Insulin Type", value="Rapid-Acting")
        override_correction_dose = gr.Number(label="Override Correction Dose (units)", value=None)
        extended_bolus_duration = gr.Number(label="Extended Bolus Duration (h)", value=0)
        weight = gr.Number(label="Weight (kg)", value=70)
        tdd = gr.Number(label="Total Daily Dose (units)", value=40)
        insulin_output = gr.Textbox(label="Insulin Details", lines=10)
        bolus_output = gr.Number(label="Bolus Dose (units)")

    with gr.Tab("Basal Settings"):
        basal_rates_input = gr.Textbox(label="Basal Rates (JSON)", value=json.dumps(DEFAULT_BASAL_RATES), lines=2)
        basal_output = gr.Textbox(label="Basal Settings", lines=4)

    with gr.Tab("Other Factors"):
        stress_level = gr.Slider(1, 10, step=1, label="Stress Level", value=1)
        sleep_hours = gr.Number(label="Sleep Hours", value=7)
        exercise_duration = gr.Number(label="Exercise Duration (min)", value=0)
        exercise_intensity = gr.Slider(1, 10, step=1, label="Exercise Intensity", value=1)
        time_hours = gr.Slider(1, 24, step=1, label="Prediction Time (h)", value=6)
        plot_output = gr.Plot(label="Glucose Prediction")

    calculate_btn = gr.Button("Calculate")

    calculate_btn.click(
        diabetes_dashboard,
        inputs=[
            initial_glucose, food_image, food_name_input, weight_grams,
            insulin_type, override_correction_dose, extended_bolus_duration,
            weight, tdd, target_glucose, basal_rates_input,
            stress_level, sleep_hours, exercise_duration, exercise_intensity, time_hours
        ],
        outputs=[glucose_meal_output, insulin_output, basal_output, bolus_output, plot_output]
    )

if __name__ == "__main__":
    app.launch()