File size: 17,269 Bytes
d868d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import argparse
import json
from typing import Any, Dict, Iterable, List, Optional, Tuple

import numpy as np
import pandas as pd
import plotly.express as px


def get_col_name(col: str) -> str:
    parts = [part[1:-1] for part in col[1:-1].split(", ") if part[1:-1] != ""]
    return parts[-1]


def get_idx_entry(s: str, keep_only_last_part: bool = False) -> Tuple[str, str]:
    k, v = s.split("=", 1)
    if keep_only_last_part:
        k = k.split(".")[-1]
    return k, v


def get_idx_dict(job_id: str, keep_only_last_part: bool = False) -> Dict[str, str]:
    return dict(
        get_idx_entry(part, keep_only_last_part=keep_only_last_part) for part in job_id.split("-")
    )


def unflatten_index(
    index: Iterable[str],
    keep_only_last_part: bool = False,
    dtypes: Optional[Dict[str, Any]] = None,
) -> pd.MultiIndex:
    as_df = pd.DataFrame.from_records(
        [get_idx_dict(idx, keep_only_last_part=keep_only_last_part) for idx in index]
    )
    if dtypes is not None:
        dtypes_valid = {col: dtype for col, dtype in dtypes.items() if col in as_df.columns}
        as_df = as_df.astype(dtypes_valid)
    return pd.MultiIndex.from_frame(as_df.convert_dtypes())


def col_to_str(col_entries: Iterable[str], names: Iterable[Optional[str]], sep: str) -> str:
    return sep.join(
        [
            f"{name}={col_entry}" if name is not None else col_entry
            for col_entry, name in zip(col_entries, names)
        ]
    )


def flatten_index(index: pd.MultiIndex, names: Optional[List[Optional[str]]] = None) -> pd.Index:
    names = names or index.names
    if names is None:
        raise ValueError("names must be provided if index has no names")
    return pd.Index([col_to_str(col, names=names, sep=",") for col in index])


def prepare_quality_and_throughput_dfs(
    metric_data_path: str,
    job_return_value_path: str,
    char_total: int,
    index_dtypes: Optional[Dict[str, Any]] = None,
    job_id_prefix: Optional[str] = None,
) -> Tuple[pd.DataFrame, pd.Series]:

    with open(metric_data_path) as f:
        data = json.load(f)

    # save result from above command in "data" (use only last ouf the output line!)
    df = pd.DataFrame.from_dict(data)
    df.columns = [get_col_name(col) for col in df.columns]
    f1_series = df.set_index([col for col in df.columns if col != "f1"])["f1"]
    f1_df = f1_series.apply(lambda x: pd.Series(x)).T

    with open(job_return_value_path) as f:
        job_return_value = json.load(f)

    job_ids = job_return_value["job_id"]
    if job_id_prefix is not None:
        job_ids = [
            f"{job_id_prefix},{job_id}" if job_id.strip() != "" else job_id_prefix
            for job_id in job_ids
        ]
    index = unflatten_index(
        job_ids,
        keep_only_last_part=True,
        dtypes=index_dtypes,
    )
    prediction_time_series = pd.Series(
        job_return_value["prediction_time"], index=index, name="prediction_time"
    )
    f1_df.index = prediction_time_series.index

    k_chars_per_s = char_total / (prediction_time_series * 1000)
    k_chars_per_s.name = "1k_chars_per_s"

    return f1_df, k_chars_per_s


def get_pareto_front_mask(df: pd.DataFrame, x_col: str, y_col: str) -> pd.Series:
    """
    Return a boolean mask indicating which rows belong to the Pareto front.
    In this version, we assume you want to maximize both x_col and y_col.

    A point A is said to dominate point B if:
        A[x_col] >= B[x_col] AND
        A[y_col] >= B[y_col] AND
        at least one is strictly greater.
    Then B is not on the Pareto front.

    Parameters
    ----------
    df : pd.DataFrame
        DataFrame containing the data points.
    x_col : str
        Name of the column to treat as the first objective (maximize).
    y_col : str
        Name of the column to treat as the second objective (maximize).

    Returns
    -------
    pd.Series
        A boolean Series (aligned with df.index) where True means
        the row is on the Pareto front.
    """
    # Extract the relevant columns as a NumPy array for speed.
    data = df[[x_col, y_col]].values
    n = len(data)
    is_dominated = np.zeros(n, dtype=bool)

    for i in range(n):
        # If it's already marked dominated, skip checks
        if is_dominated[i]:
            continue

        for j in range(n):
            if i == j:
                continue
            # Check if j dominates i
            if (
                data[j, 0] >= data[i, 0]
                and data[j, 1] >= data[i, 1]
                and (data[j, 0] > data[i, 0] or data[j, 1] > data[i, 1])
            ):
                is_dominated[i] = True
                break

    # Return True for points not dominated by any other
    return pd.Series(~is_dominated, index=df.index)


def main(
    job_return_value_path_test: List[str],
    job_return_value_path_val: List[str],
    metric_data_path_test: List[str],
    metric_data_path_val: List[str],
    char_total_test: int,
    char_total_val: int,
    job_id_prefixes: Optional[List[str]] = None,
    metric_filters: Optional[List[str]] = None,
    index_filters: Optional[List[str]] = None,
    index_blacklist: Optional[List[str]] = None,
    label_mapping: Optional[Dict[str, str]] = None,
    plot_method: str = "line",  # can be "scatter" or "line"
    pareto_front: bool = False,
    show_as: str = "figure",
    columns: Optional[List[str]] = None,
    color_column: Optional[str] = None,
):
    label_mapping = label_mapping or {}
    if job_id_prefixes is not None:
        if len(job_id_prefixes) != len(job_return_value_path_test):
            raise ValueError(
                f"job_id_prefixes ({len(job_id_prefixes)}) and "
                f"job_return_value_path_test ({len(job_return_value_path_test)}) "
                f"must have the same length"
            )
        # replace empty strings with None
        job_id_prefixes_with_none = [
            job_id_prefix if job_id_prefix != "" else None for job_id_prefix in job_id_prefixes
        ]
    else:
        job_id_prefixes_with_none = [None] * len(job_return_value_path_test)

    # combine input data for test and val
    char_total = {"test": char_total_test, "val": char_total_val}
    metric_data_path = {"test": metric_data_path_test, "val": metric_data_path_val}
    job_return_value_path = {"test": job_return_value_path_test, "val": job_return_value_path_val}
    # prepare dataframes
    common_kwargs = dict(
        index_dtypes={
            "max_argument_distance": int,
            "max_length": int,
            "num_beams": int,
        }
    )
    f1_df_list: Dict[str, List[pd.DataFrame]] = {"test": [], "val": []}
    k_chars_per_s_list: Dict[str, List[pd.Series]] = {"test": [], "val": []}
    for split in metric_data_path:
        if len(metric_data_path[split]) != len(job_return_value_path[split]):
            raise ValueError(
                f"metric_data_path[{split}] ({len(metric_data_path[split])}) and "
                f"job_return_value_path[{split}] ({len(job_return_value_path[split])}) "
                f"must have the same length"
            )
        for current_metric_data_path, current_job_return_value_path, job_id_prefix in zip(
            metric_data_path[split], job_return_value_path[split], job_id_prefixes_with_none
        ):
            current_f1_df, current_k_chars_per_s = prepare_quality_and_throughput_dfs(
                current_metric_data_path,
                current_job_return_value_path,
                char_total=char_total[split],
                job_id_prefix=job_id_prefix,
                **common_kwargs,
            )
            f1_df_list[split].append(current_f1_df)
            k_chars_per_s_list[split].append(current_k_chars_per_s)
    f1_df_dict = {split: pd.concat(f1_df_list[split], axis=0) for split in f1_df_list}
    k_chars_per_s_dict = {
        split: pd.concat(k_chars_per_s_list[split], axis=0) for split in k_chars_per_s_list
    }

    # combine dataframes for test and val
    f1_df = pd.concat(f1_df_dict, names=["split"] + f1_df_dict["test"].index.names)
    f1_df.columns = [col_to_str(col, names=f1_df.columns.names, sep=",") for col in f1_df.columns]
    k_chars_per_s = pd.concat(
        k_chars_per_s_dict,
        names=["split"] + k_chars_per_s_dict["test"].index.names,
    )

    # combine quality and throughput data
    df_plot = pd.concat([f1_df, k_chars_per_s], axis=1)
    df_plot = (
        df_plot.reset_index()
        .set_index(list(f1_df.index.names) + [k_chars_per_s.name])
        .unstack("split")
    )
    df_plot.columns = flatten_index(df_plot.columns, names=[None, "split"])

    # remove all columns that are not needed
    if metric_filters is not None:
        for fil in metric_filters:
            df_plot.drop(columns=[col for col in df_plot.columns if fil not in col], inplace=True)
            df_plot.columns = [col.replace(fil, "") for col in df_plot.columns]

    # flatten the columns
    df_plot.columns = [
        ",".join([part for part in col.split(",") if part != ""]) for col in df_plot.columns
    ]

    v: Any
    if index_filters is not None:
        for k_v in index_filters:
            k, v = k_v.split("=")
            if k in common_kwargs["index_dtypes"]:
                v = common_kwargs["index_dtypes"][k](v)
            df_plot = df_plot.xs(v, level=k, axis=0)

    if index_blacklist is not None:
        for k_v in index_blacklist:
            k, v = k_v.split("=")
            if k in common_kwargs["index_dtypes"]:
                v = common_kwargs["index_dtypes"][k](v)
            df_plot = df_plot.drop(v, level=k, axis=0)

    if columns is not None:
        df_plot = df_plot[columns]

    x = "1k_chars_per_s"
    y = df_plot.columns

    if pareto_front:
        for col in y:
            current_data = df_plot[col].dropna().reset_index(x).copy()
            pareto_front_mask = get_pareto_front_mask(current_data, x_col=x, y_col=col)
            current_data.loc[~pareto_front_mask, col] = np.nan
            current_data_reset = current_data.reset_index().set_index(df_plot.index.names)
            df_plot[col] = current_data_reset[col]

    # remove nan rows
    df_plot = df_plot.dropna(how="all")

    # plot
    # Create a custom color sequence (concatenating multiple palettes if needed)
    custom_colors = px.colors.qualitative.Dark24 + px.colors.qualitative.Light24

    text_cols = list(df_plot.index.names)
    text_cols.remove(x)
    df_plot_reset = df_plot.reset_index()
    if len(text_cols) > 1:
        df_plot_reset[",".join(text_cols)] = (
            df_plot_reset[text_cols].astype(str).agg(", ".join, axis=1)
        )
    text_col = ",".join(text_cols)

    if show_as == "figure":
        _plot_method = getattr(px, plot_method)
        df_plot_sorted = df_plot_reset.sort_values(by=x)
        fig = _plot_method(
            df_plot_sorted,
            x=x,
            y=y,
            text=text_col if plot_method != "scatter" else None,
            color=color_column,
            color_discrete_sequence=custom_colors,
            hover_data=text_cols,
        )

        # set connectgaps to True to connect the lines
        fig.update_traces(connectgaps=True)

        legend_title = "Evaluation Setup"
        if metric_filters:
            whitelist_filters_mapped = [label_mapping.get(fil, fil) for fil in metric_filters]
            legend_title += f" ({', '.join(whitelist_filters_mapped)})"

        text_cols_mapped = [label_mapping.get(col, col) for col in text_cols]
        title = f"Impact of {', '.join(text_cols_mapped)} on Prediction Quality and Throughput"
        if index_filters:
            index_filters_mapped = [label_mapping.get(fil, fil) for fil in index_filters]
            title += f" ({', '.join(index_filters_mapped)})"
        if pareto_front:
            title += " (Pareto Front)"

        fig.update_layout(
            xaxis_title="Throughput (1k chars/s)",
            yaxis_title="Quality (F1)",
            title=title,
            # center the title
            title_x=0.2,
            # black title
            title_font=dict(color="black"),
            # change legend title
            legend_title=legend_title,
            font_family="Computer Modern",
            # white background
            plot_bgcolor="white",
            paper_bgcolor="white",
        )
        update_axes_kwargs = dict(
            tickfont=dict(color="black"),
            title_font=dict(color="black"),
            ticks="inside",  # ensure tick markers are drawn
            tickcolor="black",
            tickwidth=1,
            ticklen=10,
            linecolor="black",
            # show grid
            gridcolor="lightgray",
        )
        fig.update_yaxes(**update_axes_kwargs)
        fig.update_xaxes(**update_axes_kwargs)

        fig.show()
    elif show_as == "markdown":
        # Print the DataFrame as a Markdown table
        print(df_plot_reset.to_markdown(index=False, floatfmt=".4f"))
    elif show_as == "json":
        # Print the DataFrame as a JSON object
        print(df_plot_reset.to_json(orient="columns", indent=4))
    else:
        raise ValueError(f"Unknown show_as value: {show_as}. Use 'figure', 'markdown' or 'json'.")


if __name__ == "__main__":

    """
    # Example usage 1 (pipeline model, data from data source: https://github.com/ArneBinder/pie-document-level/issues/388#issuecomment-2752829257):
    python src/analysis/show_inference_params_on_quality_and_throughput.py \
        --job-return-value-path-test logs/prediction/multiruns/default/2025-03-26_01-31-05/job_return_value.json \
        --job-return-value-path-val logs/prediction/multiruns/default/2025-03-26_16-49-36/job_return_value.json \
        --metric-data-path-test data/evaluation/argumentation_structure/inference_pipeline_test.json \
        --metric-data-path-val data/evaluation/argumentation_structure/inference_pipeline_validation.json \
        --metric-filters task=are discont_comp=true split=val

    # Example usage 2 (joint model, data from: https://github.com/ArneBinder/pie-document-level/issues/390#issuecomment-2759888004)
    python src/analysis/show_inference_params_on_quality_and_throughput.py \
        --job-return-value-path-test logs/prediction/multiruns/default/2025-03-28_01-34-07/job_return_value.json \
        --job-return-value-path-val logs/prediction/multiruns/default/2025-03-28_02-57-00/job_return_value.json \
        --metric-data-path-test data/evaluation/argumentation_structure/inference_joint_test.json \
        --metric-data-path-val data/evaluation/argumentation_structure/inference_joint_validation.json \
        --metric-filters task=are discont_comp=true split=val \
        --plot-method scatter
    """

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--job-return-value-path-test",
        type=str,
        nargs="+",
        required=True,
    )
    parser.add_argument(
        "--job-return-value-path-val",
        type=str,
        nargs="+",
        required=True,
    )
    parser.add_argument(
        "--metric-data-path-test",
        type=str,
        nargs="+",
        required=True,
    )
    parser.add_argument(
        "--metric-data-path-val",
        type=str,
        nargs="+",
        required=True,
    )
    parser.add_argument(
        "--job-id-prefixes",
        type=str,
        nargs="*",
        default=None,
    )
    parser.add_argument(
        "--plot-method",
        type=str,
        default="line",
        choices=["scatter", "line"],
        help="Plot method to use (default: line)",
    )
    parser.add_argument(
        "--color-column",
        type=str,
        default=None,
        help="Column to use for colour coding (default: None)",
    )
    parser.add_argument(
        "--metric-filters",
        type=str,
        nargs="*",
        default=None,
        help="Filters to apply to the metric data in the format 'key=value'",
    )
    parser.add_argument(
        "--index-filters",
        type=str,
        nargs="*",
        default=None,
        help="Filters to apply to the index data in the format 'key=value'",
    )
    parser.add_argument(
        "--index-blacklist",
        type=str,
        nargs="*",
        default=None,
        help="Blacklist to apply to the index data in the format 'key=value'",
    )
    parser.add_argument(
        "--columns",
        type=str,
        nargs="*",
        default=None,
        help="Columns to plot (default: all)",
    )
    parser.add_argument(
        "--pareto-front",
        action="store_true",
        help="Whether to show only the pareto front",
    )
    parser.add_argument(
        "--show-as",
        type=str,
        default="figure",
        choices=["figure", "markdown", "json"],
        help="How to show the results (default: figure)",
    )

    kwargs = vars(parser.parse_args())

    main(
        char_total_test=383154,
        char_total_val=182794,
        label_mapping={
            "max_argument_distance": "Max. Argument Distance",
            "max_length": "Max. Length",
            "num_beams": "Num. Beams",
            "task=are": "ARE",
            "discont_comp=true": "Discont. Comp.",
            "split=val": "Validation Split",
        },
        **kwargs,
    )