File size: 17,269 Bytes
d868d2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
import argparse
import json
from typing import Any, Dict, Iterable, List, Optional, Tuple
import numpy as np
import pandas as pd
import plotly.express as px
def get_col_name(col: str) -> str:
parts = [part[1:-1] for part in col[1:-1].split(", ") if part[1:-1] != ""]
return parts[-1]
def get_idx_entry(s: str, keep_only_last_part: bool = False) -> Tuple[str, str]:
k, v = s.split("=", 1)
if keep_only_last_part:
k = k.split(".")[-1]
return k, v
def get_idx_dict(job_id: str, keep_only_last_part: bool = False) -> Dict[str, str]:
return dict(
get_idx_entry(part, keep_only_last_part=keep_only_last_part) for part in job_id.split("-")
)
def unflatten_index(
index: Iterable[str],
keep_only_last_part: bool = False,
dtypes: Optional[Dict[str, Any]] = None,
) -> pd.MultiIndex:
as_df = pd.DataFrame.from_records(
[get_idx_dict(idx, keep_only_last_part=keep_only_last_part) for idx in index]
)
if dtypes is not None:
dtypes_valid = {col: dtype for col, dtype in dtypes.items() if col in as_df.columns}
as_df = as_df.astype(dtypes_valid)
return pd.MultiIndex.from_frame(as_df.convert_dtypes())
def col_to_str(col_entries: Iterable[str], names: Iterable[Optional[str]], sep: str) -> str:
return sep.join(
[
f"{name}={col_entry}" if name is not None else col_entry
for col_entry, name in zip(col_entries, names)
]
)
def flatten_index(index: pd.MultiIndex, names: Optional[List[Optional[str]]] = None) -> pd.Index:
names = names or index.names
if names is None:
raise ValueError("names must be provided if index has no names")
return pd.Index([col_to_str(col, names=names, sep=",") for col in index])
def prepare_quality_and_throughput_dfs(
metric_data_path: str,
job_return_value_path: str,
char_total: int,
index_dtypes: Optional[Dict[str, Any]] = None,
job_id_prefix: Optional[str] = None,
) -> Tuple[pd.DataFrame, pd.Series]:
with open(metric_data_path) as f:
data = json.load(f)
# save result from above command in "data" (use only last ouf the output line!)
df = pd.DataFrame.from_dict(data)
df.columns = [get_col_name(col) for col in df.columns]
f1_series = df.set_index([col for col in df.columns if col != "f1"])["f1"]
f1_df = f1_series.apply(lambda x: pd.Series(x)).T
with open(job_return_value_path) as f:
job_return_value = json.load(f)
job_ids = job_return_value["job_id"]
if job_id_prefix is not None:
job_ids = [
f"{job_id_prefix},{job_id}" if job_id.strip() != "" else job_id_prefix
for job_id in job_ids
]
index = unflatten_index(
job_ids,
keep_only_last_part=True,
dtypes=index_dtypes,
)
prediction_time_series = pd.Series(
job_return_value["prediction_time"], index=index, name="prediction_time"
)
f1_df.index = prediction_time_series.index
k_chars_per_s = char_total / (prediction_time_series * 1000)
k_chars_per_s.name = "1k_chars_per_s"
return f1_df, k_chars_per_s
def get_pareto_front_mask(df: pd.DataFrame, x_col: str, y_col: str) -> pd.Series:
"""
Return a boolean mask indicating which rows belong to the Pareto front.
In this version, we assume you want to maximize both x_col and y_col.
A point A is said to dominate point B if:
A[x_col] >= B[x_col] AND
A[y_col] >= B[y_col] AND
at least one is strictly greater.
Then B is not on the Pareto front.
Parameters
----------
df : pd.DataFrame
DataFrame containing the data points.
x_col : str
Name of the column to treat as the first objective (maximize).
y_col : str
Name of the column to treat as the second objective (maximize).
Returns
-------
pd.Series
A boolean Series (aligned with df.index) where True means
the row is on the Pareto front.
"""
# Extract the relevant columns as a NumPy array for speed.
data = df[[x_col, y_col]].values
n = len(data)
is_dominated = np.zeros(n, dtype=bool)
for i in range(n):
# If it's already marked dominated, skip checks
if is_dominated[i]:
continue
for j in range(n):
if i == j:
continue
# Check if j dominates i
if (
data[j, 0] >= data[i, 0]
and data[j, 1] >= data[i, 1]
and (data[j, 0] > data[i, 0] or data[j, 1] > data[i, 1])
):
is_dominated[i] = True
break
# Return True for points not dominated by any other
return pd.Series(~is_dominated, index=df.index)
def main(
job_return_value_path_test: List[str],
job_return_value_path_val: List[str],
metric_data_path_test: List[str],
metric_data_path_val: List[str],
char_total_test: int,
char_total_val: int,
job_id_prefixes: Optional[List[str]] = None,
metric_filters: Optional[List[str]] = None,
index_filters: Optional[List[str]] = None,
index_blacklist: Optional[List[str]] = None,
label_mapping: Optional[Dict[str, str]] = None,
plot_method: str = "line", # can be "scatter" or "line"
pareto_front: bool = False,
show_as: str = "figure",
columns: Optional[List[str]] = None,
color_column: Optional[str] = None,
):
label_mapping = label_mapping or {}
if job_id_prefixes is not None:
if len(job_id_prefixes) != len(job_return_value_path_test):
raise ValueError(
f"job_id_prefixes ({len(job_id_prefixes)}) and "
f"job_return_value_path_test ({len(job_return_value_path_test)}) "
f"must have the same length"
)
# replace empty strings with None
job_id_prefixes_with_none = [
job_id_prefix if job_id_prefix != "" else None for job_id_prefix in job_id_prefixes
]
else:
job_id_prefixes_with_none = [None] * len(job_return_value_path_test)
# combine input data for test and val
char_total = {"test": char_total_test, "val": char_total_val}
metric_data_path = {"test": metric_data_path_test, "val": metric_data_path_val}
job_return_value_path = {"test": job_return_value_path_test, "val": job_return_value_path_val}
# prepare dataframes
common_kwargs = dict(
index_dtypes={
"max_argument_distance": int,
"max_length": int,
"num_beams": int,
}
)
f1_df_list: Dict[str, List[pd.DataFrame]] = {"test": [], "val": []}
k_chars_per_s_list: Dict[str, List[pd.Series]] = {"test": [], "val": []}
for split in metric_data_path:
if len(metric_data_path[split]) != len(job_return_value_path[split]):
raise ValueError(
f"metric_data_path[{split}] ({len(metric_data_path[split])}) and "
f"job_return_value_path[{split}] ({len(job_return_value_path[split])}) "
f"must have the same length"
)
for current_metric_data_path, current_job_return_value_path, job_id_prefix in zip(
metric_data_path[split], job_return_value_path[split], job_id_prefixes_with_none
):
current_f1_df, current_k_chars_per_s = prepare_quality_and_throughput_dfs(
current_metric_data_path,
current_job_return_value_path,
char_total=char_total[split],
job_id_prefix=job_id_prefix,
**common_kwargs,
)
f1_df_list[split].append(current_f1_df)
k_chars_per_s_list[split].append(current_k_chars_per_s)
f1_df_dict = {split: pd.concat(f1_df_list[split], axis=0) for split in f1_df_list}
k_chars_per_s_dict = {
split: pd.concat(k_chars_per_s_list[split], axis=0) for split in k_chars_per_s_list
}
# combine dataframes for test and val
f1_df = pd.concat(f1_df_dict, names=["split"] + f1_df_dict["test"].index.names)
f1_df.columns = [col_to_str(col, names=f1_df.columns.names, sep=",") for col in f1_df.columns]
k_chars_per_s = pd.concat(
k_chars_per_s_dict,
names=["split"] + k_chars_per_s_dict["test"].index.names,
)
# combine quality and throughput data
df_plot = pd.concat([f1_df, k_chars_per_s], axis=1)
df_plot = (
df_plot.reset_index()
.set_index(list(f1_df.index.names) + [k_chars_per_s.name])
.unstack("split")
)
df_plot.columns = flatten_index(df_plot.columns, names=[None, "split"])
# remove all columns that are not needed
if metric_filters is not None:
for fil in metric_filters:
df_plot.drop(columns=[col for col in df_plot.columns if fil not in col], inplace=True)
df_plot.columns = [col.replace(fil, "") for col in df_plot.columns]
# flatten the columns
df_plot.columns = [
",".join([part for part in col.split(",") if part != ""]) for col in df_plot.columns
]
v: Any
if index_filters is not None:
for k_v in index_filters:
k, v = k_v.split("=")
if k in common_kwargs["index_dtypes"]:
v = common_kwargs["index_dtypes"][k](v)
df_plot = df_plot.xs(v, level=k, axis=0)
if index_blacklist is not None:
for k_v in index_blacklist:
k, v = k_v.split("=")
if k in common_kwargs["index_dtypes"]:
v = common_kwargs["index_dtypes"][k](v)
df_plot = df_plot.drop(v, level=k, axis=0)
if columns is not None:
df_plot = df_plot[columns]
x = "1k_chars_per_s"
y = df_plot.columns
if pareto_front:
for col in y:
current_data = df_plot[col].dropna().reset_index(x).copy()
pareto_front_mask = get_pareto_front_mask(current_data, x_col=x, y_col=col)
current_data.loc[~pareto_front_mask, col] = np.nan
current_data_reset = current_data.reset_index().set_index(df_plot.index.names)
df_plot[col] = current_data_reset[col]
# remove nan rows
df_plot = df_plot.dropna(how="all")
# plot
# Create a custom color sequence (concatenating multiple palettes if needed)
custom_colors = px.colors.qualitative.Dark24 + px.colors.qualitative.Light24
text_cols = list(df_plot.index.names)
text_cols.remove(x)
df_plot_reset = df_plot.reset_index()
if len(text_cols) > 1:
df_plot_reset[",".join(text_cols)] = (
df_plot_reset[text_cols].astype(str).agg(", ".join, axis=1)
)
text_col = ",".join(text_cols)
if show_as == "figure":
_plot_method = getattr(px, plot_method)
df_plot_sorted = df_plot_reset.sort_values(by=x)
fig = _plot_method(
df_plot_sorted,
x=x,
y=y,
text=text_col if plot_method != "scatter" else None,
color=color_column,
color_discrete_sequence=custom_colors,
hover_data=text_cols,
)
# set connectgaps to True to connect the lines
fig.update_traces(connectgaps=True)
legend_title = "Evaluation Setup"
if metric_filters:
whitelist_filters_mapped = [label_mapping.get(fil, fil) for fil in metric_filters]
legend_title += f" ({', '.join(whitelist_filters_mapped)})"
text_cols_mapped = [label_mapping.get(col, col) for col in text_cols]
title = f"Impact of {', '.join(text_cols_mapped)} on Prediction Quality and Throughput"
if index_filters:
index_filters_mapped = [label_mapping.get(fil, fil) for fil in index_filters]
title += f" ({', '.join(index_filters_mapped)})"
if pareto_front:
title += " (Pareto Front)"
fig.update_layout(
xaxis_title="Throughput (1k chars/s)",
yaxis_title="Quality (F1)",
title=title,
# center the title
title_x=0.2,
# black title
title_font=dict(color="black"),
# change legend title
legend_title=legend_title,
font_family="Computer Modern",
# white background
plot_bgcolor="white",
paper_bgcolor="white",
)
update_axes_kwargs = dict(
tickfont=dict(color="black"),
title_font=dict(color="black"),
ticks="inside", # ensure tick markers are drawn
tickcolor="black",
tickwidth=1,
ticklen=10,
linecolor="black",
# show grid
gridcolor="lightgray",
)
fig.update_yaxes(**update_axes_kwargs)
fig.update_xaxes(**update_axes_kwargs)
fig.show()
elif show_as == "markdown":
# Print the DataFrame as a Markdown table
print(df_plot_reset.to_markdown(index=False, floatfmt=".4f"))
elif show_as == "json":
# Print the DataFrame as a JSON object
print(df_plot_reset.to_json(orient="columns", indent=4))
else:
raise ValueError(f"Unknown show_as value: {show_as}. Use 'figure', 'markdown' or 'json'.")
if __name__ == "__main__":
"""
# Example usage 1 (pipeline model, data from data source: https://github.com/ArneBinder/pie-document-level/issues/388#issuecomment-2752829257):
python src/analysis/show_inference_params_on_quality_and_throughput.py \
--job-return-value-path-test logs/prediction/multiruns/default/2025-03-26_01-31-05/job_return_value.json \
--job-return-value-path-val logs/prediction/multiruns/default/2025-03-26_16-49-36/job_return_value.json \
--metric-data-path-test data/evaluation/argumentation_structure/inference_pipeline_test.json \
--metric-data-path-val data/evaluation/argumentation_structure/inference_pipeline_validation.json \
--metric-filters task=are discont_comp=true split=val
# Example usage 2 (joint model, data from: https://github.com/ArneBinder/pie-document-level/issues/390#issuecomment-2759888004)
python src/analysis/show_inference_params_on_quality_and_throughput.py \
--job-return-value-path-test logs/prediction/multiruns/default/2025-03-28_01-34-07/job_return_value.json \
--job-return-value-path-val logs/prediction/multiruns/default/2025-03-28_02-57-00/job_return_value.json \
--metric-data-path-test data/evaluation/argumentation_structure/inference_joint_test.json \
--metric-data-path-val data/evaluation/argumentation_structure/inference_joint_validation.json \
--metric-filters task=are discont_comp=true split=val \
--plot-method scatter
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--job-return-value-path-test",
type=str,
nargs="+",
required=True,
)
parser.add_argument(
"--job-return-value-path-val",
type=str,
nargs="+",
required=True,
)
parser.add_argument(
"--metric-data-path-test",
type=str,
nargs="+",
required=True,
)
parser.add_argument(
"--metric-data-path-val",
type=str,
nargs="+",
required=True,
)
parser.add_argument(
"--job-id-prefixes",
type=str,
nargs="*",
default=None,
)
parser.add_argument(
"--plot-method",
type=str,
default="line",
choices=["scatter", "line"],
help="Plot method to use (default: line)",
)
parser.add_argument(
"--color-column",
type=str,
default=None,
help="Column to use for colour coding (default: None)",
)
parser.add_argument(
"--metric-filters",
type=str,
nargs="*",
default=None,
help="Filters to apply to the metric data in the format 'key=value'",
)
parser.add_argument(
"--index-filters",
type=str,
nargs="*",
default=None,
help="Filters to apply to the index data in the format 'key=value'",
)
parser.add_argument(
"--index-blacklist",
type=str,
nargs="*",
default=None,
help="Blacklist to apply to the index data in the format 'key=value'",
)
parser.add_argument(
"--columns",
type=str,
nargs="*",
default=None,
help="Columns to plot (default: all)",
)
parser.add_argument(
"--pareto-front",
action="store_true",
help="Whether to show only the pareto front",
)
parser.add_argument(
"--show-as",
type=str,
default="figure",
choices=["figure", "markdown", "json"],
help="How to show the results (default: figure)",
)
kwargs = vars(parser.parse_args())
main(
char_total_test=383154,
char_total_val=182794,
label_mapping={
"max_argument_distance": "Max. Argument Distance",
"max_length": "Max. Length",
"num_beams": "Num. Beams",
"task=are": "ARE",
"discont_comp=true": "Discont. Comp.",
"split=val": "Validation Split",
},
**kwargs,
)
|