File size: 32,888 Bytes
3133b5e d868d2e 3133b5e e7eaeed 3133b5e ced4316 3133b5e d868d2e 3133b5e ced4316 d868d2e ced4316 e7eaeed d868d2e ced4316 3133b5e ced4316 3133b5e ced4316 3133b5e ced4316 3133b5e ced4316 3133b5e ced4316 3133b5e d868d2e 3133b5e ced4316 e7eaeed ced4316 e7eaeed ced4316 e7eaeed ced4316 e7eaeed ced4316 e7eaeed ced4316 e7eaeed ced4316 e7eaeed ced4316 e7eaeed ced4316 e7eaeed ced4316 e7eaeed ced4316 e7eaeed d868d2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 |
from __future__ import annotations
import itertools
import logging
from collections import defaultdict
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, TypeVar, Union
from pie_modules.utils.span import have_overlap
from pytorch_ie import AnnotationLayer
from pytorch_ie.annotations import BinaryRelation, LabeledMultiSpan, LabeledSpan, MultiSpan, Span
from pytorch_ie.core import Document
from pytorch_ie.core.document import Annotation, _enumerate_dependencies
from pytorch_ie.documents import TextDocumentWithLabeledSpansAndBinaryRelations
from src.document.types import (
RelatedRelation,
TextDocumentWithLabeledMultiSpansBinaryRelationsLabeledPartitionsAndRelatedRelations,
)
from src.utils import distance, distance_slices
from src.utils.graph_utils import get_connected_components
from src.utils.span_utils import get_overlap_len
logger = logging.getLogger(__name__)
D = TypeVar("D", bound=Document)
def _remove_overlapping_entities(
entities: Iterable[Dict[str, Any]], relations: Iterable[Dict[str, Any]]
) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
sorted_entities = sorted(entities, key=lambda span: span["start"])
entities_wo_overlap = []
skipped_entities = []
last_end = 0
for entity_dict in sorted_entities:
if entity_dict["start"] < last_end:
skipped_entities.append(entity_dict)
else:
entities_wo_overlap.append(entity_dict)
last_end = entity_dict["end"]
if len(skipped_entities) > 0:
logger.warning(f"skipped overlapping entities: {skipped_entities}")
valid_entity_ids = set(entity_dict["_id"] for entity_dict in entities_wo_overlap)
valid_relations = [
relation_dict
for relation_dict in relations
if relation_dict["head"] in valid_entity_ids and relation_dict["tail"] in valid_entity_ids
]
return entities_wo_overlap, valid_relations
def remove_overlapping_entities(
doc: D,
entity_layer_name: str = "entities",
relation_layer_name: str = "relations",
) -> D:
# TODO: use document.add_all_annotations_from_other()
document_dict = doc.asdict()
entities_wo_overlap, valid_relations = _remove_overlapping_entities(
entities=document_dict[entity_layer_name]["annotations"],
relations=document_dict[relation_layer_name]["annotations"],
)
document_dict[entity_layer_name] = {
"annotations": entities_wo_overlap,
"predictions": [],
}
document_dict[relation_layer_name] = {
"annotations": valid_relations,
"predictions": [],
}
new_doc = type(doc).fromdict(document_dict)
return new_doc
def remove_partitions_by_labels(
document: D, partition_layer: str, label_blacklist: List[str], span_layer: Optional[str] = None
) -> D:
"""Remove partitions with labels in the blacklist from a document.
Args:
document: The document to process.
partition_layer: The name of the partition layer.
label_blacklist: The list of labels to remove.
span_layer: The name of the span layer to remove spans from if they are not fully
contained in any remaining partition. Any dependent annotations will be removed as well.
Returns:
The processed document.
"""
document = document.copy()
p_layer: AnnotationLayer = document[partition_layer]
new_partitions = []
for partition in p_layer.clear():
if partition.label not in label_blacklist:
new_partitions.append(partition)
p_layer.extend(new_partitions)
if span_layer is not None:
result = document.copy(with_annotations=False)
removed_span_ids = set()
for span in document[span_layer]:
# keep spans fully contained in any partition
if any(
partition.start <= span.start and span.end <= partition.end
for partition in new_partitions
):
result[span_layer].append(span.copy())
else:
removed_span_ids.add(span._id)
result.add_all_annotations_from_other(
document,
removed_annotations={span_layer: removed_span_ids},
strict=False,
verbose=False,
)
document = result
return document
D_text = TypeVar("D_text", bound=Document)
def remove_annotations_by_label(
document: D, layer2label_blacklist: Dict[str, List[str]], verbose: bool = False
) -> D:
"""Remove annotations with labels in the blacklist from a document.
Args:
document: The document to process.
layer2label_blacklist: A mapping from layer names to lists of labels to remove.
verbose: Whether to print number of removed annotations.
Returns:
The processed document.
"""
result = document.copy(with_annotations=False)
override_annotations: Dict[str, Dict[int, Annotation]] = defaultdict(dict)
removed_annotations: Dict[str, Set[int]] = defaultdict(set)
for layer_name, labels in layer2label_blacklist.items():
# process gold annotations and predictions
for src_layer, tgt_layer in [
(document[layer_name], result[layer_name]),
(document[layer_name].predictions, result[layer_name].predictions),
]:
current_override_annotations = dict()
current_removed_annotations = set()
for annotation in src_layer:
label = getattr(annotation, "label")
if label is None:
raise ValueError(
f"Annotation {annotation} has no label. Please check the annotation type."
)
if label not in labels:
current_override_annotations[annotation._id] = annotation.copy()
else:
current_removed_annotations.add(annotation._id)
tgt_layer.extend(current_override_annotations.values())
override_annotations[layer_name].update(current_override_annotations)
removed_annotations[layer_name].update(current_removed_annotations)
if verbose:
num_removed = {
layer_name: len(removed_ids) for layer_name, removed_ids in removed_annotations.items()
}
if len(num_removed) > 0:
num_total = {
layer_name: len(kept_ids) + num_removed[layer_name]
for layer_name, kept_ids in override_annotations.items()
}
logger.warning(
f"doc.id={document.id}: Removed {num_removed} (total: {num_total}) "
f"annotations with label blacklists {layer2label_blacklist}"
)
result.add_all_annotations_from_other(
other=document,
removed_annotations=removed_annotations,
override_annotations=override_annotations,
strict=False,
verbose=False,
)
return result
def replace_substrings_in_text(
document: D_text, replacements: Dict[str, str], enforce_same_length: bool = True
) -> D_text:
new_text = document.text
for old_str, new_str in replacements.items():
if enforce_same_length and len(old_str) != len(new_str):
raise ValueError(
f'Replacement strings must have the same length, but got "{old_str}" -> "{new_str}"'
)
new_text = new_text.replace(old_str, new_str)
result_dict = document.asdict()
result_dict["text"] = new_text
result = type(document).fromdict(result_dict)
result.text = new_text
return result
def replace_substrings_in_text_with_spaces(document: D_text, substrings: Iterable[str]) -> D_text:
replacements = {substring: " " * len(substring) for substring in substrings}
return replace_substrings_in_text(document, replacements=replacements)
def relabel_annotations(
document: D,
label_mapping: Dict[str, Dict[str, str]],
) -> D:
"""
Replace annotation labels in a document.
Args:
document: The document to process.
label_mapping: A mapping from layer names to mappings from old labels to new labels.
Returns:
The processed document.
"""
dependency_ordered_fields: List[str] = []
_enumerate_dependencies(
dependency_ordered_fields,
dependency_graph=document._annotation_graph,
nodes=document._annotation_graph["_artificial_root"],
)
result = document.copy(with_annotations=False)
store: Dict[int, Annotation] = {}
# not yet used
invalid_annotation_ids: Set[int] = set()
for field_name in dependency_ordered_fields:
if field_name in document._annotation_fields:
layer = document[field_name]
for is_prediction, anns in [(False, layer), (True, layer.predictions)]:
for ann in anns:
new_ann = ann.copy_with_store(
override_annotation_store=store,
invalid_annotation_ids=invalid_annotation_ids,
)
if field_name in label_mapping:
if ann.label in label_mapping[field_name]:
new_label = label_mapping[field_name][ann.label]
new_ann = new_ann.copy(label=new_label)
else:
raise ValueError(
f"Label {ann.label} not found in label mapping for {field_name}"
)
store[ann._id] = new_ann
target_layer = result[field_name]
if is_prediction:
target_layer.predictions.append(new_ann)
else:
target_layer.append(new_ann)
return result
DWithSpans = TypeVar("DWithSpans", bound=Document)
def get_start_end(span: Union[Span, MultiSpan]) -> Tuple[int, int]:
if isinstance(span, Span):
return span.start, span.end
elif isinstance(span, MultiSpan):
starts, ends = zip(*span.slices)
return min(starts), max(ends)
else:
raise ValueError(f"Unsupported span type: {type(span)}")
def _get_aligned_span_mappings(
gold_spans: Iterable[Span], pred_spans: Iterable[Span], distance_type: str
) -> Tuple[Dict[int, Span], Dict[int, Span]]:
old2new_pred_span = {}
span_id2gold_span = {}
for pred_span in pred_spans:
gold_spans_with_distance = [
(
gold_span,
distance(
start_end=get_start_end(pred_span),
other_start_end=get_start_end(gold_span),
distance_type=distance_type,
),
)
for gold_span in gold_spans
]
if len(gold_spans_with_distance) == 0:
continue
closest_gold_span, min_distance = min(gold_spans_with_distance, key=lambda x: x[1])
# if the closest gold span is the same as the predicted span, we don't need to align
if min_distance == 0.0:
continue
pred_start_end = get_start_end(pred_span)
closest_gold_start_end = get_start_end(closest_gold_span)
if have_overlap(
start_end=pred_start_end,
other_start_end=closest_gold_start_end,
):
overlap_len = get_overlap_len(pred_start_end, closest_gold_start_end)
l_max = max(
pred_start_end[1] - pred_start_end[0],
closest_gold_start_end[1] - closest_gold_start_end[0],
)
# if the overlap is at least half of the maximum length, we consider it a valid match for alignment
valid_match = overlap_len >= (l_max / 2)
else:
valid_match = False
if valid_match:
if isinstance(pred_span, Span):
aligned_pred_span = pred_span.copy(
start=closest_gold_span.start, end=closest_gold_span.end
)
elif isinstance(pred_span, MultiSpan):
aligned_pred_span = pred_span.copy(slices=closest_gold_span.slices)
else:
raise ValueError(f"Unsupported span type: {type(pred_span)}")
old2new_pred_span[pred_span._id] = aligned_pred_span
span_id2gold_span[pred_span._id] = closest_gold_span
return old2new_pred_span, span_id2gold_span
def get_spans2multi_spans_mapping(multi_spans: Iterable[MultiSpan]) -> Dict[Span, MultiSpan]:
result = {}
for multi_span in multi_spans:
for start, end in multi_span.slices:
span_kwargs = dict(start=start, end=end, score=multi_span.score)
if isinstance(multi_span, LabeledMultiSpan):
result[LabeledSpan(label=multi_span.label, **span_kwargs)] = multi_span
else:
result[Span(**span_kwargs)] = multi_span
return result
def align_predicted_span_annotations(
document: DWithSpans,
span_layer: str,
distance_type: str = "center",
simple_multi_span: bool = False,
verbose: bool = False,
) -> DWithSpans:
"""
Aligns predicted span annotations with the closest gold spans in a document.
First, calculates the distance between each predicted span and each gold span. Then,
for each predicted span, the gold span with the smallest distance is selected. If the
predicted span and the gold span have an overlap of at least half of the maximum length
of the two spans, the predicted span is aligned with the gold span.
This also works for MultiSpan annotations, where the slices of the MultiSpan are used
to align the predicted spans. If any of the slices is aligned with a gold slice,
the MultiSpan is aligned with the respective gold MultiSpan. However, this may result in
the predicted MultiSpan being aligned with multiple gold MultiSpans, in which case the
closest gold MultiSpan is selected. A simplified version of this alignment can be achieved
by setting `simple_multi_span=True`, which treats MultiSpan annotations as simple Spans
by using their maximum and minimum start and end indices.
Args:
document: The document to process.
span_layer: The name of the span layer.
distance_type: The type of distance to calculate. One of: center, inner, outer
simple_multi_span: Whether to treat MultiSpan annotations as simple Spans by using their
maximum and minimum start and end indices.
verbose: Whether to print debug information.
Returns:
The processed document.
"""
gold_spans = document[span_layer]
if len(gold_spans) == 0:
return document.copy()
pred_spans = document[span_layer].predictions
span_annotation_type = document.annotation_types()[span_layer]
if issubclass(span_annotation_type, Span) or simple_multi_span:
old2new_pred_span, span_id2gold_span = _get_aligned_span_mappings(
gold_spans=gold_spans, pred_spans=pred_spans, distance_type=distance_type
)
elif issubclass(span_annotation_type, MultiSpan):
# create Span objects from MultiSpan slices
gold_single_spans2multi_spans = get_spans2multi_spans_mapping(gold_spans)
pred_single_spans2multi_spans = get_spans2multi_spans_mapping(pred_spans)
# create the alignment mappings for the single spans
single_old2new_pred_span, single_span_id2gold_span = _get_aligned_span_mappings(
gold_spans=gold_single_spans2multi_spans.keys(),
pred_spans=pred_single_spans2multi_spans.keys(),
distance_type=distance_type,
)
# collect all Spans that are part of the same MultiSpan
pred_multi_span2single_spans: Dict[MultiSpan, List[Span]] = defaultdict(list)
for pred_span, multi_span in pred_single_spans2multi_spans.items():
pred_multi_span2single_spans[multi_span].append(pred_span)
# create the new mappings for the MultiSpans
old2new_pred_span = {}
span_id2gold_span = {}
for pred_multi_span, pred_single_spans in pred_multi_span2single_spans.items():
# if any of the single spans is aligned with a gold span, align the multi span
if any(
pred_single_span._id in single_old2new_pred_span
for pred_single_span in pred_single_spans
):
# get aligned gold multi spans
aligned_gold_multi_spans = set()
for pred_single_span in pred_single_spans:
if pred_single_span._id in single_old2new_pred_span:
aligned_gold_single_span = single_span_id2gold_span[pred_single_span._id]
aligned_gold_multi_span = gold_single_spans2multi_spans[
aligned_gold_single_span
]
aligned_gold_multi_spans.add(aligned_gold_multi_span)
# calculate distances between the predicted multi span and the aligned gold multi spans
gold_multi_spans_with_distance = [
(
gold_multi_span,
distance_slices(
slices=pred_multi_span.slices,
other_slices=gold_multi_span.slices,
distance_type=distance_type,
),
)
for gold_multi_span in aligned_gold_multi_spans
]
if len(aligned_gold_multi_spans) > 1:
logger.warning(
f"Multiple gold multi spans aligned with predicted multi span ({pred_multi_span}): "
f"{aligned_gold_multi_spans}"
)
# get the closest gold multi span
closest_gold_multi_span, min_distance = min(
gold_multi_spans_with_distance, key=lambda x: x[1]
)
old2new_pred_span[pred_multi_span._id] = pred_multi_span.copy(
slices=closest_gold_multi_span.slices
)
span_id2gold_span[pred_multi_span._id] = closest_gold_multi_span
else:
raise ValueError(f"Unsupported span annotation type: {span_annotation_type}")
result = document.copy(with_annotations=False)
# multiple predicted spans can be aligned with the same gold span,
# so we need to keep track of the added spans
added_pred_span_ids = dict()
for pred_span in pred_spans:
# just add the predicted span if it was not aligned with a gold span
if pred_span._id not in old2new_pred_span:
# if this was not added before (e.g. as aligned span), add it
if pred_span._id not in added_pred_span_ids:
keep_pred_span = pred_span.copy()
result[span_layer].predictions.append(keep_pred_span)
added_pred_span_ids[pred_span._id] = keep_pred_span
elif verbose:
print(f"Skipping duplicate predicted span. pred_span='{str(pred_span)}'")
else:
aligned_pred_span = old2new_pred_span[pred_span._id]
# if this was not added before (e.g. as aligned or original pred span), add it
if aligned_pred_span._id not in added_pred_span_ids:
result[span_layer].predictions.append(aligned_pred_span)
added_pred_span_ids[aligned_pred_span._id] = aligned_pred_span
elif verbose:
prev_pred_span = added_pred_span_ids[aligned_pred_span._id]
gold_span = span_id2gold_span[pred_span._id]
print(
f"Skipping duplicate aligned predicted span. aligned gold_span='{str(gold_span)}', "
f"prev_pred_span='{str(prev_pred_span)}', current_pred_span='{str(pred_span)}'"
)
# print("bbb")
result[span_layer].extend([span.copy() for span in gold_spans])
# add remaining gold and predicted spans (the result, _aligned_spans, is just for debugging)
_aligned_spans = result.add_all_annotations_from_other(
document, override_annotations={span_layer: old2new_pred_span}
)
return result
def add_related_relations_from_binary_relations(
document: TextDocumentWithLabeledMultiSpansBinaryRelationsLabeledPartitionsAndRelatedRelations,
link_relation_label: str,
link_partition_whitelist: Optional[List[List[str]]] = None,
relation_label_whitelist: Optional[List[str]] = None,
reversed_relation_suffix: str = "_reversed",
symmetric_relations: Optional[List[str]] = None,
) -> TextDocumentWithLabeledMultiSpansBinaryRelationsLabeledPartitionsAndRelatedRelations:
span2partition = {}
for multi_span in document.labeled_multi_spans:
found_partition = False
for partition in document.labeled_partitions or [
LabeledSpan(start=0, end=len(document.text), label="ALL")
]:
starts, ends = zip(*multi_span.slices)
if partition.start <= min(starts) and max(ends) <= partition.end:
span2partition[multi_span] = partition
found_partition = True
break
if not found_partition:
raise ValueError(f"No partition found for multi_span {multi_span}")
rel_head2rels = defaultdict(list)
rel_tail2rels = defaultdict(list)
for rel in document.binary_relations:
rel_head2rels[rel.head].append(rel)
rel_tail2rels[rel.tail].append(rel)
link_partition_whitelist_tuples = None
if link_partition_whitelist is not None:
link_partition_whitelist_tuples = {tuple(pair) for pair in link_partition_whitelist}
skipped_labels = []
for link_rel in document.binary_relations:
if link_rel.label == link_relation_label:
head_partition = span2partition[link_rel.head]
tail_partition = span2partition[link_rel.tail]
if link_partition_whitelist_tuples is None or (
(head_partition.label, tail_partition.label) in link_partition_whitelist_tuples
):
# link_head -> link_tail == rel_head -> rel_tail
for rel in rel_head2rels.get(link_rel.tail, []):
label = rel.label
if relation_label_whitelist is None or label in relation_label_whitelist:
new_rel = RelatedRelation(
head=link_rel.head,
tail=rel.tail,
link_relation=link_rel,
relation=rel,
label=label,
)
document.related_relations.append(new_rel)
else:
skipped_labels.append(label)
# link_head -> link_tail == rel_tail -> rel_head
if reversed_relation_suffix is not None:
for reversed_rel in rel_tail2rels.get(link_rel.tail, []):
label = reversed_rel.label
if not (symmetric_relations is not None and label in symmetric_relations):
label = f"{label}{reversed_relation_suffix}"
if relation_label_whitelist is None or label in relation_label_whitelist:
new_rel = RelatedRelation(
head=link_rel.head,
tail=reversed_rel.head,
link_relation=link_rel,
relation=reversed_rel,
label=label,
)
document.related_relations.append(new_rel)
else:
skipped_labels.append(label)
else:
logger.warning(
f"Skipping related relation because of partition whitelist ({[head_partition.label, tail_partition.label]}): {link_rel.resolve()}"
)
if len(skipped_labels) > 0:
logger.warning(
f"Skipped relations with labels not in whitelist: {sorted(set(skipped_labels))}"
)
return document
T = TypeVar("T", bound=TextDocumentWithLabeledSpansAndBinaryRelations)
def remove_discontinuous_spans(
document: T,
parts_of_same_relation: str,
verbose: bool = False,
) -> T:
"""
Remove discontinuous spans from a document.
Args:
document: The document to process.
parts_of_same_relation: The name of the relation that indicates linked spans.
verbose: Whether to print debug information.
Returns:
The processed document.
"""
result = document.copy()
spans = result.labeled_spans.clear()
rels = result.binary_relations.clear()
segment_spans = set()
segment_rels = set()
# collect all spans that are linked
for rel in rels:
if rel.label == parts_of_same_relation:
segment_spans.add(rel.head)
segment_spans.add(rel.tail)
segment_rels.add(rel)
for span in spans:
if span not in segment_spans:
result.labeled_spans.append(span)
other_rels_dropped = set()
for rel in rels:
if rel not in segment_rels:
if rel.head not in segment_spans and rel.tail not in segment_spans:
result.binary_relations.append(rel)
else:
other_rels_dropped.add(rel)
if verbose:
if len(segment_rels) > 0:
logger.warning(
f"doc={document.id}: Dropped {len(segment_rels)} segment rels "
f"and {len(other_rels_dropped)} other rels "
f"({round((len(document.binary_relations) - len(result.binary_relations)) * 100 / len(document.binary_relations), 1)}% "
f"of all relations dropped)"
)
return result
def close_clusters_transitively(
document: D, relation_layer: str, link_relation_label: str, verbose: bool = False
) -> D:
"""
Close clusters transitively by adding relations between all pairs of spans in the same cluster.
Args:
document: The document to process.
relation_layer: The name of the relation layer.
link_relation_label: The label of the link relation.
verbose: Whether to print debug information.
Returns:
The processed document.
"""
result = document.copy()
connected_components: List[List[Annotation]] = get_connected_components(
relations=result[relation_layer],
link_relation_label=link_relation_label,
add_singletons=False,
)
# detach from document
relations = result[relation_layer].clear()
# use set to speed up membership checks
relations_set = set(relations)
n_before = len(relations)
for cluster in connected_components:
for head, tail in itertools.combinations(sorted(cluster), 2):
rel = BinaryRelation(
head=head,
tail=tail,
label=link_relation_label,
)
rel_reversed = BinaryRelation(
head=tail,
tail=head,
label=link_relation_label,
)
if rel not in relations_set and rel_reversed not in relations_set:
# append to relations to keep the order
relations.append(rel)
relations_set.add(rel)
result[relation_layer].extend(relations)
if verbose:
num_added = len(relations) - n_before
if num_added > 0:
logger.warning(
f"doc.id={document.id}: added {num_added} relations to {relation_layer} layer"
)
return result
def get_ancestor_layers(children: Dict[str, Set[str]], layer: str) -> Set[str]:
"""
Get all ancestor layers of a given layer in the dependency graph.
Args:
children: A mapping from layers to their children layers.
layer: The layer for which to find ancestors.
Returns:
A set of ancestor layers.
"""
ancestors = set()
def _get_ancestors(current_layer: str):
for parent_layer, child_layers in children.items():
if current_layer in child_layers:
ancestors.add(parent_layer)
_get_ancestors(parent_layer)
_get_ancestors(layer)
# drop the _artificial_root
ancestors.discard("_artificial_root")
return ancestors
def remove_binary_relations_by_partition_labels(
document: D,
partition_layer: str,
relation_layer: str,
partition_label_whitelist: Optional[List[List[str]]] = None,
partition_label_blacklist: Optional[List[List[str]]] = None,
verbose: bool = False,
) -> D:
"""
Remove binary relations that are not between partitions with labels in the whitelist or
that are in the blacklist.
Args:
document: The document to process.
partition_layer: The name of the partition layer.
relation_layer: The name of the relation layer.
partition_label_whitelist: The list of head-tail label pairs to keep.
partition_label_blacklist: The list of head-tail label pairs to remove.
verbose: Whether to print the removed relations to console.
Returns:
The processed document.
"""
result = document.copy()
relation_annotation_layer = result[relation_layer]
# get all layers that target the relation layer
relation_dependent_layers = get_ancestor_layers(
children=result._annotation_graph, layer=relation_layer
)
# clear all layers that depend on the relation layer
for layer_name in relation_dependent_layers:
dependent_layer = result[layer_name]
gold_anns_cleared = dependent_layer.clear()
pred_anns_cleared = dependent_layer.predictions.clear()
if len(gold_anns_cleared) > 0 or len(pred_anns_cleared) > 0:
if verbose:
logger.warning(
f"doc.id={document.id}: Cleared {len(gold_anns_cleared)} gold and "
f"{len(pred_anns_cleared)} predicted annotations from layer {layer_name} "
f"because it depends on the relation layer {relation_layer}."
)
span2partition = {}
span_layer: AnnotationLayer
for span_layer in relation_annotation_layer.target_layers.values():
for span in list(span_layer) + list(span_layer.predictions):
if isinstance(span, Span):
span_start, span_end = span.start, span.end
elif isinstance(span, MultiSpan):
span_start, span_end = min(start for start, _ in span.slices), max(
end for _, end in span.slices
)
else:
raise ValueError(f"Unsupported span type: {type(span)}")
found_partition = False
for partition in result[partition_layer]:
if partition.start <= span_start and span_end <= partition.end:
span2partition[span] = partition
found_partition = True
break
if not found_partition:
raise ValueError(f"No partition found for span {span}")
if partition_label_whitelist is not None:
partition_label_whitelist_tuples = [tuple(pair) for pair in partition_label_whitelist]
else:
partition_label_whitelist_tuples = None
if partition_label_blacklist is not None:
partition_label_blacklist_tuples = [tuple(pair) for pair in partition_label_blacklist]
else:
partition_label_blacklist_tuples = None
for relation_base_layer in [relation_annotation_layer, relation_annotation_layer.predictions]:
# get all relations and clear the layer
relations = relation_base_layer.clear()
for relation in relations:
head_partition = span2partition[relation.head]
tail_partition = span2partition[relation.tail]
pair = (head_partition.label, tail_partition.label)
if (
partition_label_whitelist_tuples is None
or pair in partition_label_whitelist_tuples
) and (
partition_label_blacklist_tuples is None
or pair not in partition_label_blacklist_tuples
):
relation_base_layer.append(relation)
else:
if verbose:
logger.info(
f"Removing relation {relation} because its partitions "
f"({pair}) are not in the whitelist or are in the blacklist."
)
return result
|