File size: 32,888 Bytes
3133b5e
 
d868d2e
3133b5e
e7eaeed
 
3133b5e
ced4316
3133b5e
d868d2e
3133b5e
ced4316
d868d2e
ced4316
e7eaeed
 
 
 
 
d868d2e
ced4316
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
3133b5e
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
3133b5e
ced4316
3133b5e
ced4316
3133b5e
 
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3133b5e
 
 
 
 
 
d868d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7eaeed
 
 
 
 
 
 
 
ced4316
 
e7eaeed
 
 
ced4316
 
 
 
 
 
 
 
e7eaeed
 
ced4316
 
 
 
 
e7eaeed
 
ced4316
 
 
 
 
 
e7eaeed
 
 
ced4316
e7eaeed
 
ced4316
e7eaeed
ced4316
e7eaeed
 
ced4316
 
 
 
 
 
 
e7eaeed
 
 
 
 
 
 
 
ced4316
 
 
e7eaeed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7eaeed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d868d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
from __future__ import annotations

import itertools
import logging
from collections import defaultdict
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, TypeVar, Union

from pie_modules.utils.span import have_overlap
from pytorch_ie import AnnotationLayer
from pytorch_ie.annotations import BinaryRelation, LabeledMultiSpan, LabeledSpan, MultiSpan, Span
from pytorch_ie.core import Document
from pytorch_ie.core.document import Annotation, _enumerate_dependencies
from pytorch_ie.documents import TextDocumentWithLabeledSpansAndBinaryRelations

from src.document.types import (
    RelatedRelation,
    TextDocumentWithLabeledMultiSpansBinaryRelationsLabeledPartitionsAndRelatedRelations,
)
from src.utils import distance, distance_slices
from src.utils.graph_utils import get_connected_components
from src.utils.span_utils import get_overlap_len

logger = logging.getLogger(__name__)


D = TypeVar("D", bound=Document)


def _remove_overlapping_entities(
    entities: Iterable[Dict[str, Any]], relations: Iterable[Dict[str, Any]]
) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
    sorted_entities = sorted(entities, key=lambda span: span["start"])
    entities_wo_overlap = []
    skipped_entities = []
    last_end = 0
    for entity_dict in sorted_entities:
        if entity_dict["start"] < last_end:
            skipped_entities.append(entity_dict)
        else:
            entities_wo_overlap.append(entity_dict)
            last_end = entity_dict["end"]
    if len(skipped_entities) > 0:
        logger.warning(f"skipped overlapping entities: {skipped_entities}")
    valid_entity_ids = set(entity_dict["_id"] for entity_dict in entities_wo_overlap)
    valid_relations = [
        relation_dict
        for relation_dict in relations
        if relation_dict["head"] in valid_entity_ids and relation_dict["tail"] in valid_entity_ids
    ]
    return entities_wo_overlap, valid_relations


def remove_overlapping_entities(
    doc: D,
    entity_layer_name: str = "entities",
    relation_layer_name: str = "relations",
) -> D:
    # TODO: use document.add_all_annotations_from_other()
    document_dict = doc.asdict()
    entities_wo_overlap, valid_relations = _remove_overlapping_entities(
        entities=document_dict[entity_layer_name]["annotations"],
        relations=document_dict[relation_layer_name]["annotations"],
    )

    document_dict[entity_layer_name] = {
        "annotations": entities_wo_overlap,
        "predictions": [],
    }
    document_dict[relation_layer_name] = {
        "annotations": valid_relations,
        "predictions": [],
    }
    new_doc = type(doc).fromdict(document_dict)

    return new_doc


def remove_partitions_by_labels(
    document: D, partition_layer: str, label_blacklist: List[str], span_layer: Optional[str] = None
) -> D:
    """Remove partitions with labels in the blacklist from a document.

    Args:
        document: The document to process.
        partition_layer: The name of the partition layer.
        label_blacklist: The list of labels to remove.
        span_layer: The name of the span layer to remove spans from if they are not fully
            contained in any remaining partition. Any dependent annotations will be removed as well.

    Returns:
        The processed document.
    """

    document = document.copy()
    p_layer: AnnotationLayer = document[partition_layer]
    new_partitions = []
    for partition in p_layer.clear():
        if partition.label not in label_blacklist:
            new_partitions.append(partition)
    p_layer.extend(new_partitions)

    if span_layer is not None:
        result = document.copy(with_annotations=False)
        removed_span_ids = set()
        for span in document[span_layer]:
            # keep spans fully contained in any partition
            if any(
                partition.start <= span.start and span.end <= partition.end
                for partition in new_partitions
            ):
                result[span_layer].append(span.copy())
            else:
                removed_span_ids.add(span._id)

        result.add_all_annotations_from_other(
            document,
            removed_annotations={span_layer: removed_span_ids},
            strict=False,
            verbose=False,
        )
        document = result

    return document


D_text = TypeVar("D_text", bound=Document)


def remove_annotations_by_label(
    document: D, layer2label_blacklist: Dict[str, List[str]], verbose: bool = False
) -> D:
    """Remove annotations with labels in the blacklist from a document.

    Args:
        document: The document to process.
        layer2label_blacklist: A mapping from layer names to lists of labels to remove.
        verbose: Whether to print number of removed annotations.

    Returns:
        The processed document.
    """

    result = document.copy(with_annotations=False)
    override_annotations: Dict[str, Dict[int, Annotation]] = defaultdict(dict)
    removed_annotations: Dict[str, Set[int]] = defaultdict(set)
    for layer_name, labels in layer2label_blacklist.items():
        # process gold annotations and predictions
        for src_layer, tgt_layer in [
            (document[layer_name], result[layer_name]),
            (document[layer_name].predictions, result[layer_name].predictions),
        ]:
            current_override_annotations = dict()
            current_removed_annotations = set()
            for annotation in src_layer:
                label = getattr(annotation, "label")
                if label is None:
                    raise ValueError(
                        f"Annotation {annotation} has no label. Please check the annotation type."
                    )
                if label not in labels:
                    current_override_annotations[annotation._id] = annotation.copy()
                else:
                    current_removed_annotations.add(annotation._id)
            tgt_layer.extend(current_override_annotations.values())

            override_annotations[layer_name].update(current_override_annotations)
            removed_annotations[layer_name].update(current_removed_annotations)
    if verbose:
        num_removed = {
            layer_name: len(removed_ids) for layer_name, removed_ids in removed_annotations.items()
        }
        if len(num_removed) > 0:
            num_total = {
                layer_name: len(kept_ids) + num_removed[layer_name]
                for layer_name, kept_ids in override_annotations.items()
            }
            logger.warning(
                f"doc.id={document.id}: Removed {num_removed} (total: {num_total}) "
                f"annotations with label blacklists {layer2label_blacklist}"
            )

    result.add_all_annotations_from_other(
        other=document,
        removed_annotations=removed_annotations,
        override_annotations=override_annotations,
        strict=False,
        verbose=False,
    )
    return result


def replace_substrings_in_text(
    document: D_text, replacements: Dict[str, str], enforce_same_length: bool = True
) -> D_text:
    new_text = document.text
    for old_str, new_str in replacements.items():
        if enforce_same_length and len(old_str) != len(new_str):
            raise ValueError(
                f'Replacement strings must have the same length, but got "{old_str}" -> "{new_str}"'
            )
        new_text = new_text.replace(old_str, new_str)
    result_dict = document.asdict()
    result_dict["text"] = new_text
    result = type(document).fromdict(result_dict)
    result.text = new_text
    return result


def replace_substrings_in_text_with_spaces(document: D_text, substrings: Iterable[str]) -> D_text:
    replacements = {substring: " " * len(substring) for substring in substrings}
    return replace_substrings_in_text(document, replacements=replacements)


def relabel_annotations(
    document: D,
    label_mapping: Dict[str, Dict[str, str]],
) -> D:
    """
    Replace annotation labels in a document.

    Args:
        document: The document to process.
        label_mapping: A mapping from layer names to mappings from old labels to new labels.

    Returns:
        The processed document.

    """

    dependency_ordered_fields: List[str] = []
    _enumerate_dependencies(
        dependency_ordered_fields,
        dependency_graph=document._annotation_graph,
        nodes=document._annotation_graph["_artificial_root"],
    )
    result = document.copy(with_annotations=False)
    store: Dict[int, Annotation] = {}
    # not yet used
    invalid_annotation_ids: Set[int] = set()
    for field_name in dependency_ordered_fields:
        if field_name in document._annotation_fields:
            layer = document[field_name]
            for is_prediction, anns in [(False, layer), (True, layer.predictions)]:
                for ann in anns:
                    new_ann = ann.copy_with_store(
                        override_annotation_store=store,
                        invalid_annotation_ids=invalid_annotation_ids,
                    )
                    if field_name in label_mapping:
                        if ann.label in label_mapping[field_name]:
                            new_label = label_mapping[field_name][ann.label]
                            new_ann = new_ann.copy(label=new_label)
                        else:
                            raise ValueError(
                                f"Label {ann.label} not found in label mapping for {field_name}"
                            )
                    store[ann._id] = new_ann
                    target_layer = result[field_name]
                    if is_prediction:
                        target_layer.predictions.append(new_ann)
                    else:
                        target_layer.append(new_ann)

    return result


DWithSpans = TypeVar("DWithSpans", bound=Document)


def get_start_end(span: Union[Span, MultiSpan]) -> Tuple[int, int]:
    if isinstance(span, Span):
        return span.start, span.end
    elif isinstance(span, MultiSpan):
        starts, ends = zip(*span.slices)
        return min(starts), max(ends)
    else:
        raise ValueError(f"Unsupported span type: {type(span)}")


def _get_aligned_span_mappings(
    gold_spans: Iterable[Span], pred_spans: Iterable[Span], distance_type: str
) -> Tuple[Dict[int, Span], Dict[int, Span]]:
    old2new_pred_span = {}
    span_id2gold_span = {}
    for pred_span in pred_spans:

        gold_spans_with_distance = [
            (
                gold_span,
                distance(
                    start_end=get_start_end(pred_span),
                    other_start_end=get_start_end(gold_span),
                    distance_type=distance_type,
                ),
            )
            for gold_span in gold_spans
        ]
        if len(gold_spans_with_distance) == 0:
            continue

        closest_gold_span, min_distance = min(gold_spans_with_distance, key=lambda x: x[1])
        # if the closest gold span is the same as the predicted span, we don't need to align
        if min_distance == 0.0:
            continue

        pred_start_end = get_start_end(pred_span)
        closest_gold_start_end = get_start_end(closest_gold_span)

        if have_overlap(
            start_end=pred_start_end,
            other_start_end=closest_gold_start_end,
        ):
            overlap_len = get_overlap_len(pred_start_end, closest_gold_start_end)
            l_max = max(
                pred_start_end[1] - pred_start_end[0],
                closest_gold_start_end[1] - closest_gold_start_end[0],
            )
            # if the overlap is at least half of the maximum length, we consider it a valid match for alignment
            valid_match = overlap_len >= (l_max / 2)
        else:
            valid_match = False

        if valid_match:
            if isinstance(pred_span, Span):
                aligned_pred_span = pred_span.copy(
                    start=closest_gold_span.start, end=closest_gold_span.end
                )
            elif isinstance(pred_span, MultiSpan):
                aligned_pred_span = pred_span.copy(slices=closest_gold_span.slices)
            else:
                raise ValueError(f"Unsupported span type: {type(pred_span)}")
            old2new_pred_span[pred_span._id] = aligned_pred_span
            span_id2gold_span[pred_span._id] = closest_gold_span

    return old2new_pred_span, span_id2gold_span


def get_spans2multi_spans_mapping(multi_spans: Iterable[MultiSpan]) -> Dict[Span, MultiSpan]:
    result = {}
    for multi_span in multi_spans:
        for start, end in multi_span.slices:
            span_kwargs = dict(start=start, end=end, score=multi_span.score)
            if isinstance(multi_span, LabeledMultiSpan):
                result[LabeledSpan(label=multi_span.label, **span_kwargs)] = multi_span
            else:
                result[Span(**span_kwargs)] = multi_span

    return result


def align_predicted_span_annotations(
    document: DWithSpans,
    span_layer: str,
    distance_type: str = "center",
    simple_multi_span: bool = False,
    verbose: bool = False,
) -> DWithSpans:
    """
    Aligns predicted span annotations with the closest gold spans in a document.

    First, calculates the distance between each predicted span and each gold span. Then,
    for each predicted span, the gold span with the smallest distance is selected. If the
    predicted span and the gold span have an overlap of at least half of the maximum length
    of the two spans, the predicted span is aligned with the gold span.

    This also works for MultiSpan annotations, where the slices of the MultiSpan are used
    to align the predicted spans. If any of the slices is aligned with a gold slice,
    the MultiSpan is aligned with the respective gold MultiSpan. However, this may result in
    the predicted MultiSpan being aligned with multiple gold MultiSpans, in which case the
    closest gold MultiSpan is selected. A simplified version of this alignment can be achieved
    by setting `simple_multi_span=True`, which treats MultiSpan annotations as simple Spans
    by using their maximum and minimum start and end indices.

    Args:
        document: The document to process.
        span_layer: The name of the span layer.
        distance_type: The type of distance to calculate. One of: center, inner, outer
        simple_multi_span: Whether to treat MultiSpan annotations as simple Spans by using their
            maximum and minimum start and end indices.
        verbose: Whether to print debug information.

    Returns:
        The processed document.
    """
    gold_spans = document[span_layer]
    if len(gold_spans) == 0:
        return document.copy()

    pred_spans = document[span_layer].predictions
    span_annotation_type = document.annotation_types()[span_layer]
    if issubclass(span_annotation_type, Span) or simple_multi_span:
        old2new_pred_span, span_id2gold_span = _get_aligned_span_mappings(
            gold_spans=gold_spans, pred_spans=pred_spans, distance_type=distance_type
        )
    elif issubclass(span_annotation_type, MultiSpan):
        # create Span objects from MultiSpan slices
        gold_single_spans2multi_spans = get_spans2multi_spans_mapping(gold_spans)
        pred_single_spans2multi_spans = get_spans2multi_spans_mapping(pred_spans)
        # create the alignment mappings for the single spans
        single_old2new_pred_span, single_span_id2gold_span = _get_aligned_span_mappings(
            gold_spans=gold_single_spans2multi_spans.keys(),
            pred_spans=pred_single_spans2multi_spans.keys(),
            distance_type=distance_type,
        )
        # collect all Spans that are part of the same MultiSpan
        pred_multi_span2single_spans: Dict[MultiSpan, List[Span]] = defaultdict(list)
        for pred_span, multi_span in pred_single_spans2multi_spans.items():
            pred_multi_span2single_spans[multi_span].append(pred_span)

        # create the new mappings for the MultiSpans
        old2new_pred_span = {}
        span_id2gold_span = {}
        for pred_multi_span, pred_single_spans in pred_multi_span2single_spans.items():
            # if any of the single spans is aligned with a gold span, align the multi span
            if any(
                pred_single_span._id in single_old2new_pred_span
                for pred_single_span in pred_single_spans
            ):
                # get aligned gold multi spans
                aligned_gold_multi_spans = set()
                for pred_single_span in pred_single_spans:
                    if pred_single_span._id in single_old2new_pred_span:
                        aligned_gold_single_span = single_span_id2gold_span[pred_single_span._id]
                        aligned_gold_multi_span = gold_single_spans2multi_spans[
                            aligned_gold_single_span
                        ]
                        aligned_gold_multi_spans.add(aligned_gold_multi_span)

                # calculate distances between the predicted multi span and the aligned gold multi spans
                gold_multi_spans_with_distance = [
                    (
                        gold_multi_span,
                        distance_slices(
                            slices=pred_multi_span.slices,
                            other_slices=gold_multi_span.slices,
                            distance_type=distance_type,
                        ),
                    )
                    for gold_multi_span in aligned_gold_multi_spans
                ]

                if len(aligned_gold_multi_spans) > 1:
                    logger.warning(
                        f"Multiple gold multi spans aligned with predicted multi span ({pred_multi_span}): "
                        f"{aligned_gold_multi_spans}"
                    )
                # get the closest gold multi span
                closest_gold_multi_span, min_distance = min(
                    gold_multi_spans_with_distance, key=lambda x: x[1]
                )
                old2new_pred_span[pred_multi_span._id] = pred_multi_span.copy(
                    slices=closest_gold_multi_span.slices
                )
                span_id2gold_span[pred_multi_span._id] = closest_gold_multi_span
    else:
        raise ValueError(f"Unsupported span annotation type: {span_annotation_type}")

    result = document.copy(with_annotations=False)

    # multiple predicted spans can be aligned with the same gold span,
    # so we need to keep track of the added spans
    added_pred_span_ids = dict()
    for pred_span in pred_spans:
        # just add the predicted span if it was not aligned with a gold span
        if pred_span._id not in old2new_pred_span:
            # if this was not added before (e.g. as aligned span), add it
            if pred_span._id not in added_pred_span_ids:
                keep_pred_span = pred_span.copy()
                result[span_layer].predictions.append(keep_pred_span)
                added_pred_span_ids[pred_span._id] = keep_pred_span
            elif verbose:
                print(f"Skipping duplicate predicted span. pred_span='{str(pred_span)}'")
        else:
            aligned_pred_span = old2new_pred_span[pred_span._id]
            # if this was not added before (e.g. as aligned or original pred span), add it
            if aligned_pred_span._id not in added_pred_span_ids:
                result[span_layer].predictions.append(aligned_pred_span)
                added_pred_span_ids[aligned_pred_span._id] = aligned_pred_span
            elif verbose:
                prev_pred_span = added_pred_span_ids[aligned_pred_span._id]
                gold_span = span_id2gold_span[pred_span._id]
                print(
                    f"Skipping duplicate aligned predicted span. aligned gold_span='{str(gold_span)}', "
                    f"prev_pred_span='{str(prev_pred_span)}', current_pred_span='{str(pred_span)}'"
                )
                # print("bbb")

    result[span_layer].extend([span.copy() for span in gold_spans])

    # add remaining gold and predicted spans (the result, _aligned_spans, is just for debugging)
    _aligned_spans = result.add_all_annotations_from_other(
        document, override_annotations={span_layer: old2new_pred_span}
    )

    return result


def add_related_relations_from_binary_relations(
    document: TextDocumentWithLabeledMultiSpansBinaryRelationsLabeledPartitionsAndRelatedRelations,
    link_relation_label: str,
    link_partition_whitelist: Optional[List[List[str]]] = None,
    relation_label_whitelist: Optional[List[str]] = None,
    reversed_relation_suffix: str = "_reversed",
    symmetric_relations: Optional[List[str]] = None,
) -> TextDocumentWithLabeledMultiSpansBinaryRelationsLabeledPartitionsAndRelatedRelations:
    span2partition = {}
    for multi_span in document.labeled_multi_spans:
        found_partition = False
        for partition in document.labeled_partitions or [
            LabeledSpan(start=0, end=len(document.text), label="ALL")
        ]:
            starts, ends = zip(*multi_span.slices)
            if partition.start <= min(starts) and max(ends) <= partition.end:
                span2partition[multi_span] = partition
                found_partition = True
                break
        if not found_partition:
            raise ValueError(f"No partition found for multi_span {multi_span}")

    rel_head2rels = defaultdict(list)
    rel_tail2rels = defaultdict(list)
    for rel in document.binary_relations:
        rel_head2rels[rel.head].append(rel)
        rel_tail2rels[rel.tail].append(rel)

    link_partition_whitelist_tuples = None
    if link_partition_whitelist is not None:
        link_partition_whitelist_tuples = {tuple(pair) for pair in link_partition_whitelist}

    skipped_labels = []
    for link_rel in document.binary_relations:
        if link_rel.label == link_relation_label:
            head_partition = span2partition[link_rel.head]
            tail_partition = span2partition[link_rel.tail]
            if link_partition_whitelist_tuples is None or (
                (head_partition.label, tail_partition.label) in link_partition_whitelist_tuples
            ):
                # link_head -> link_tail == rel_head -> rel_tail
                for rel in rel_head2rels.get(link_rel.tail, []):
                    label = rel.label
                    if relation_label_whitelist is None or label in relation_label_whitelist:
                        new_rel = RelatedRelation(
                            head=link_rel.head,
                            tail=rel.tail,
                            link_relation=link_rel,
                            relation=rel,
                            label=label,
                        )
                        document.related_relations.append(new_rel)
                    else:
                        skipped_labels.append(label)

                # link_head -> link_tail == rel_tail -> rel_head
                if reversed_relation_suffix is not None:
                    for reversed_rel in rel_tail2rels.get(link_rel.tail, []):
                        label = reversed_rel.label
                        if not (symmetric_relations is not None and label in symmetric_relations):
                            label = f"{label}{reversed_relation_suffix}"
                        if relation_label_whitelist is None or label in relation_label_whitelist:
                            new_rel = RelatedRelation(
                                head=link_rel.head,
                                tail=reversed_rel.head,
                                link_relation=link_rel,
                                relation=reversed_rel,
                                label=label,
                            )
                            document.related_relations.append(new_rel)
                        else:
                            skipped_labels.append(label)

            else:
                logger.warning(
                    f"Skipping related relation because of partition whitelist ({[head_partition.label, tail_partition.label]}): {link_rel.resolve()}"
                )
    if len(skipped_labels) > 0:
        logger.warning(
            f"Skipped relations with labels not in whitelist: {sorted(set(skipped_labels))}"
        )

    return document


T = TypeVar("T", bound=TextDocumentWithLabeledSpansAndBinaryRelations)


def remove_discontinuous_spans(
    document: T,
    parts_of_same_relation: str,
    verbose: bool = False,
) -> T:
    """
    Remove discontinuous spans from a document.

    Args:
        document: The document to process.
        parts_of_same_relation: The name of the relation that indicates linked spans.
        verbose: Whether to print debug information.

    Returns:
        The processed document.
    """
    result = document.copy()
    spans = result.labeled_spans.clear()
    rels = result.binary_relations.clear()

    segment_spans = set()
    segment_rels = set()
    # collect all spans that are linked
    for rel in rels:
        if rel.label == parts_of_same_relation:
            segment_spans.add(rel.head)
            segment_spans.add(rel.tail)
            segment_rels.add(rel)

    for span in spans:
        if span not in segment_spans:
            result.labeled_spans.append(span)

    other_rels_dropped = set()
    for rel in rels:
        if rel not in segment_rels:
            if rel.head not in segment_spans and rel.tail not in segment_spans:
                result.binary_relations.append(rel)
            else:
                other_rels_dropped.add(rel)

    if verbose:
        if len(segment_rels) > 0:
            logger.warning(
                f"doc={document.id}: Dropped {len(segment_rels)} segment rels "
                f"and {len(other_rels_dropped)} other rels "
                f"({round((len(document.binary_relations) - len(result.binary_relations)) * 100 / len(document.binary_relations), 1)}% "
                f"of all relations dropped)"
            )
    return result


def close_clusters_transitively(
    document: D, relation_layer: str, link_relation_label: str, verbose: bool = False
) -> D:
    """
    Close clusters transitively by adding relations between all pairs of spans in the same cluster.

    Args:
        document: The document to process.
        relation_layer: The name of the relation layer.
        link_relation_label: The label of the link relation.
        verbose: Whether to print debug information.

    Returns:
        The processed document.
    """
    result = document.copy()

    connected_components: List[List[Annotation]] = get_connected_components(
        relations=result[relation_layer],
        link_relation_label=link_relation_label,
        add_singletons=False,
    )
    # detach from document
    relations = result[relation_layer].clear()
    # use set to speed up membership checks
    relations_set = set(relations)
    n_before = len(relations)
    for cluster in connected_components:
        for head, tail in itertools.combinations(sorted(cluster), 2):
            rel = BinaryRelation(
                head=head,
                tail=tail,
                label=link_relation_label,
            )
            rel_reversed = BinaryRelation(
                head=tail,
                tail=head,
                label=link_relation_label,
            )
            if rel not in relations_set and rel_reversed not in relations_set:
                # append to relations to keep the order
                relations.append(rel)
                relations_set.add(rel)

    result[relation_layer].extend(relations)
    if verbose:
        num_added = len(relations) - n_before
        if num_added > 0:
            logger.warning(
                f"doc.id={document.id}: added {num_added} relations to {relation_layer} layer"
            )

    return result


def get_ancestor_layers(children: Dict[str, Set[str]], layer: str) -> Set[str]:
    """
    Get all ancestor layers of a given layer in the dependency graph.

    Args:
        children: A mapping from layers to their children layers.
        layer: The layer for which to find ancestors.

    Returns:
        A set of ancestor layers.
    """
    ancestors = set()

    def _get_ancestors(current_layer: str):
        for parent_layer, child_layers in children.items():
            if current_layer in child_layers:
                ancestors.add(parent_layer)
                _get_ancestors(parent_layer)

    _get_ancestors(layer)
    # drop the _artificial_root
    ancestors.discard("_artificial_root")
    return ancestors


def remove_binary_relations_by_partition_labels(
    document: D,
    partition_layer: str,
    relation_layer: str,
    partition_label_whitelist: Optional[List[List[str]]] = None,
    partition_label_blacklist: Optional[List[List[str]]] = None,
    verbose: bool = False,
) -> D:
    """
    Remove binary relations that are not between partitions with labels in the whitelist or
    that are in the blacklist.

    Args:
        document: The document to process.
        partition_layer: The name of the partition layer.
        relation_layer: The name of the relation layer.
        partition_label_whitelist: The list of head-tail label pairs to keep.
        partition_label_blacklist: The list of head-tail label pairs to remove.
        verbose: Whether to print the removed relations to console.

    Returns:
        The processed document.
    """
    result = document.copy()

    relation_annotation_layer = result[relation_layer]
    # get all layers that target the relation layer
    relation_dependent_layers = get_ancestor_layers(
        children=result._annotation_graph, layer=relation_layer
    )
    # clear all layers that depend on the relation layer
    for layer_name in relation_dependent_layers:
        dependent_layer = result[layer_name]
        gold_anns_cleared = dependent_layer.clear()
        pred_anns_cleared = dependent_layer.predictions.clear()
        if len(gold_anns_cleared) > 0 or len(pred_anns_cleared) > 0:
            if verbose:
                logger.warning(
                    f"doc.id={document.id}: Cleared {len(gold_anns_cleared)} gold and "
                    f"{len(pred_anns_cleared)} predicted annotations from layer {layer_name} "
                    f"because it depends on the relation layer {relation_layer}."
                )

    span2partition = {}
    span_layer: AnnotationLayer
    for span_layer in relation_annotation_layer.target_layers.values():
        for span in list(span_layer) + list(span_layer.predictions):
            if isinstance(span, Span):
                span_start, span_end = span.start, span.end
            elif isinstance(span, MultiSpan):
                span_start, span_end = min(start for start, _ in span.slices), max(
                    end for _, end in span.slices
                )
            else:
                raise ValueError(f"Unsupported span type: {type(span)}")
            found_partition = False
            for partition in result[partition_layer]:
                if partition.start <= span_start and span_end <= partition.end:
                    span2partition[span] = partition
                    found_partition = True
                    break
            if not found_partition:
                raise ValueError(f"No partition found for span {span}")

    if partition_label_whitelist is not None:
        partition_label_whitelist_tuples = [tuple(pair) for pair in partition_label_whitelist]
    else:
        partition_label_whitelist_tuples = None
    if partition_label_blacklist is not None:
        partition_label_blacklist_tuples = [tuple(pair) for pair in partition_label_blacklist]
    else:
        partition_label_blacklist_tuples = None

    for relation_base_layer in [relation_annotation_layer, relation_annotation_layer.predictions]:
        # get all relations and clear the layer
        relations = relation_base_layer.clear()
        for relation in relations:
            head_partition = span2partition[relation.head]
            tail_partition = span2partition[relation.tail]
            pair = (head_partition.label, tail_partition.label)
            if (
                partition_label_whitelist_tuples is None
                or pair in partition_label_whitelist_tuples
            ) and (
                partition_label_blacklist_tuples is None
                or pair not in partition_label_blacklist_tuples
            ):
                relation_base_layer.append(relation)
            else:
                if verbose:
                    logger.info(
                        f"Removing relation {relation} because its partitions "
                        f"({pair}) are not in the whitelist or are in the blacklist."
                    )

    return result