File size: 9,874 Bytes
3133b5e
 
d868d2e
3133b5e
 
 
d868d2e
 
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d868d2e
 
 
 
 
 
 
 
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d868d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3133b5e
 
 
 
d868d2e
 
3133b5e
 
 
 
 
d868d2e
 
 
 
 
 
3133b5e
d868d2e
3133b5e
 
 
 
 
 
 
 
d868d2e
 
3133b5e
 
 
 
d868d2e
 
 
 
 
 
 
 
 
 
 
 
 
3133b5e
 
 
 
 
 
 
d868d2e
 
 
 
 
 
3133b5e
d868d2e
 
 
 
3133b5e
d868d2e
3133b5e
 
 
d868d2e
 
3133b5e
 
d868d2e
3133b5e
 
 
d868d2e
3133b5e
 
 
 
d868d2e
3133b5e
 
d868d2e
 
3133b5e
 
 
 
 
d868d2e
 
 
 
3133b5e
d868d2e
 
 
 
 
3133b5e
 
 
 
 
 
 
d868d2e
 
3133b5e
 
 
 
 
d868d2e
 
 
 
 
 
 
 
 
 
 
3133b5e
 
d868d2e
 
 
 
 
 
 
 
 
3133b5e
 
 
 
 
 
 
d868d2e
 
3133b5e
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import logging
import math
from typing import Any, Callable, Dict, List, Optional, Union, overload

import numpy as np
from pandas import MultiIndex
from pie_modules.utils import flatten_dict
from pytorch_ie import Document, DocumentMetric
from pytorch_ie.core.metric import T
from pytorch_ie.utils.hydra import resolve_target

from src.hydra_callbacks.save_job_return_value import to_py_obj

logger = logging.getLogger(__name__)


def get_num_total(targets: List[int], preds: List[float]):
    return len(targets)


def get_num_positives(targets: List[int], preds: List[float], positive_idx: int = 1):
    return len([v for v in targets if v == positive_idx])


@overload
def discretize(values: List[float], threshold: float) -> List[float]: ...


@overload
def discretize(values: List[float], threshold: List[float]) -> Dict[Any, List[float]]: ...


def discretize(
    values: List[float], threshold: Union[float, List[float], dict]
) -> Union[List[float], Dict[Any, List[float]]]:
    if isinstance(threshold, float):
        result = (np.array(values) >= threshold).astype(int).tolist()
        return result
    if isinstance(threshold, list):
        return {t: discretize(values=values, threshold=t) for t in threshold}  # type: ignore
    if isinstance(threshold, dict):
        thresholds = (
            np.arange(threshold["start"], threshold["end"], threshold["step"]).round(4).tolist()
        )
        return discretize(values, threshold=thresholds)
    raise TypeError(f"threshold has unknown type: {threshold}")


def get_metric_func(name: str) -> Callable:
    if name.endswith("_curve"):
        from sklearn.metrics import auc

        base_func = resolve_target(name)

        def wrapper(targets: List[int], preds: List[float], **kwargs):
            x, y, thresholds = base_func(targets, preds, **kwargs)
            return auc(y, x)

        return wrapper
    else:
        return resolve_target(name)


def bootstrap(
    metric_fn: Callable[[List[int], Union[List[int], List[float]]], float],
    targets: List[int],
    predictions: Union[List[int], List[float]],
    n: int = 1_000,
    random_state: int | None = None,
    alpha: float = 0.95,
) -> Dict[str, float]:
    """
    Returns mean and a two–sided (1–alpha) bootstrap CI for any
    pair-wise classification or ranking metric.

    Parameters
    ----------
    metric_fn   Metric function taking (targets, prediction) lists.
    targets     Ground-truth 0/1 labels.
    prediction  Scores or hard predictions (same length as `targets`).
    n           Number of bootstrap replicates (after skipping degenerate ones).
    random_state  Seed for reproducibility.
    alpha       Confidence level (default 0.95 → 95 % CI).

    Notes
    -----
    * A replicate that contains only one class is discarded
      because many sklearn metrics are undefined in that case.
    * If all replicates are discarded an exception is raised.
    """
    y = np.asarray(targets)
    yhat = np.asarray(predictions)
    if y.shape[0] != yhat.shape[0]:
        raise ValueError("`targets` and `prediction` must have the same length")

    rng = np.random.default_rng(random_state)
    idx = np.arange(y.shape[0])
    vals_list: list[float] = []

    while len(vals_list) < n:
        sample_idx = rng.choice(idx, size=idx.shape[0], replace=True)
        y_samp, yhat_samp = y[sample_idx], yhat[sample_idx]

        # skip all-positive or all-negative bootstrap samples
        if y_samp.min() == y_samp.max():
            continue

        vals_list.append(metric_fn(y_samp.tolist(), yhat_samp.tolist()))

    if not vals_list:
        raise RuntimeError("No valid bootstrap replicate contained both classes.")

    vals = np.asarray(vals_list, dtype=float)
    lower = np.percentile(vals, (1 - alpha) / 2 * 100)
    upper = np.percentile(vals, (1 + alpha) / 2 * 100)

    return {"mean": float(vals.mean()), "low": float(lower), "high": float(upper)}


class BinaryClassificationMetricsSKLearn(DocumentMetric):

    def __init__(
        self,
        metrics: Dict[str, str],
        layer: str,
        label: Optional[str] = None,
        thresholds: Optional[Dict[str, float]] = None,
        default_target_idx: int = 0,
        default_prediction_score: float = 0.0,
        show_as_markdown: bool = False,
        markdown_precision: int = 4,
        bootstrap: Optional[list[str]] = None,
        bootstrap_n: int = 1_000,
        bootstrap_random_state: int | None = None,
        bootstrap_alpha: float = 0.95,
        create_plots: bool = True,
        plots: Optional[Dict[str, str]] = None,
    ):
        self.metrics = {name: get_metric_func(metric) for name, metric in metrics.items()}
        self.thresholds = thresholds or {}
        thresholds_not_in_metrics = {
            name: t for name, t in self.thresholds.items() if name not in self.metrics
        }
        if len(thresholds_not_in_metrics) > 0:
            logger.warning(
                f"there are discretizing thresholds that do not have a metric: {thresholds_not_in_metrics}"
            )
        self.annotation_layer_name = layer
        self.annotation_label = label
        self.default_target_idx = default_target_idx
        self.default_prediction_score = default_prediction_score
        self.show_as_markdown = show_as_markdown
        self.markdown_precision = markdown_precision
        if create_plots:
            self.plots = {
                name: resolve_target(plot_func) for name, plot_func in (plots or {}).items()
            }
        else:
            self.plots = {}

        self.bootstrap = set(bootstrap or [])
        self.bootstrap_kwargs = {
            "n": bootstrap_n,
            "random_state": bootstrap_random_state,
            "alpha": bootstrap_alpha,
        }

        super().__init__()

    def reset(self) -> None:
        self._preds: List[float] = []
        self._targets: List[int] = []

    def _update(self, document: Document) -> None:
        annotation_layer = document[self.annotation_layer_name]
        target2idx = {
            ann: int(ann.score)
            for ann in annotation_layer
            if self.annotation_label is None or ann.label == self.annotation_label
        }
        prediction2score = {
            ann: ann.score
            for ann in annotation_layer.predictions
            if self.annotation_label is None or ann.label == self.annotation_label
        }
        all_args = set(target2idx) | set(prediction2score)
        all_targets: List[int] = []
        all_predictions: List[float] = []
        for args in all_args:
            target_idx = target2idx.get(args, self.default_target_idx)
            prediction_score = prediction2score.get(args, self.default_prediction_score)
            all_targets.append(target_idx)
            all_predictions.append(prediction_score)

        self._preds.extend(all_predictions)
        self._targets.extend(all_targets)

    def create_plots(self):

        from matplotlib import pyplot as plt

        # Get the number of metrics
        num_plots = len(self.plots)

        # Calculate rows and columns for subplots (aim for a square-like layout)
        ncols = math.ceil(math.sqrt(num_plots))
        nrows = math.ceil(num_plots / ncols)

        # Create the subplots
        fig, ax_list = plt.subplots(nrows=nrows, ncols=ncols, figsize=(15, 10))

        # Flatten the ax_list if necessary (in case of multiple rows/columns)
        if num_plots > 1:
            ax_list = ax_list.flatten().tolist()  # Ensure it's a list, and flatten it if necessary
        else:
            ax_list = [ax_list]

        # Create each plot
        for ax, (name, plot_func) in zip(ax_list, self.plots.items()):
            # Set the title for each subplot
            ax.set_title(name)
            plot_func(y_true=self._targets, y_pred=self._preds, ax=ax)

        # Adjust layout to avoid overlapping plots
        plt.tight_layout()
        plt.show()

    def _compute(self) -> T:

        if len(self.plots) > 0:
            self.create_plots()

        result = {}
        for name, metric in self.metrics.items():

            if name in self.thresholds:
                preds_dict = discretize(values=self._preds, threshold=self.thresholds[name])
                if isinstance(preds_dict, dict):
                    metric_results = {
                        t: metric(self._targets, t_preds) for t, t_preds in preds_dict.items()
                    }
                    # just get the max
                    max_t, max_v = max(metric_results.items(), key=lambda k_v: k_v[1])
                    result[f"{name}_threshold"] = max_t
                    preds = discretize(values=self._preds, threshold=max_t)
                else:
                    preds = preds_dict
            else:
                preds = self._preds

            if name in self.bootstrap:
                # bootstrap the metric
                result[name] = bootstrap(
                    metric_fn=metric,
                    targets=self._targets,
                    predictions=preds,
                    **self.bootstrap_kwargs,  # type: ignore
                )
            else:
                result[name] = metric(self._targets, preds)

        result = to_py_obj(result)
        if self.show_as_markdown:
            import pandas as pd

            result_flat = flatten_dict(result)
            series = pd.Series(result_flat)
            if isinstance(series.index, MultiIndex):
                if len(series.index.levels) > 1:
                    # in fact, this is not a series anymore
                    series = series.unstack(-1)
                else:
                    series.index = series.index.get_level_values(0)
            logger.info(
                f"{self.current_split}\n{series.round(self.markdown_precision).to_markdown()}"
            )
        return result