ScientificArgumentRecommender / src /metrics /semantically_same_ranking.py
ArneBinder's picture
update from https://github.com/ArneBinder/argumentation-structure-identification/pull/529
d868d2e verified
import logging
import warnings
from collections import defaultdict
from functools import partial
from typing import Callable, Iterable, List, Optional, Set, Tuple
import numpy as np
import pandas as pd
from pytorch_ie import DocumentMetric
from pytorch_ie.annotations import BinaryRelation
from sklearn.metrics import average_precision_score, ndcg_score
logger = logging.getLogger(__name__)
NEG_INF = -1e9 # smaller than any real score
# metrics
def true_mrr(y_true: np.ndarray, y_score: np.ndarray, k: int | None = None) -> float:
"""
Macro MRR over *all* queries.
β€’ Reciprocal rank is 0 when a query has no relevant item.
β€’ If k is given, restrict the search to the top-k list.
"""
if y_true.size == 0:
return np.nan
rr = []
for t, s in zip(y_true, y_score):
if t.sum() == 0:
rr.append(0.0)
continue
order = np.argsort(-s)
if k is not None:
order = order[:k]
# first position where t == 1, +1 for 1-based rank
first_hit = np.flatnonzero(t[order] > 0)
rank = first_hit[0] + 1 if first_hit.size else np.inf
rr.append(0.0 if np.isinf(rank) else 1.0 / rank)
return np.mean(rr)
def macro_ndcg(y_true: np.ndarray, y_score: np.ndarray, k: int | None = None) -> float:
"""
Macro NDCG@k over all queries.
ndcg_score returns 0 when a query has no positives, so no masking is required.
"""
if y_true.size == 0:
return np.nan
return ndcg_score(y_true, y_score, k=k)
def macro_map(y_true: np.ndarray, y_score: np.ndarray) -> float:
"""
Macro MAP: mean of Average-Precision per query.
Queries without positives contribute AP = 0.
"""
if y_true.size == 0:
return np.nan
ap = []
for t, s in zip(y_true, y_score):
if t.sum() == 0:
ap.append(0.0)
else:
ap.append(average_precision_score(t, s))
return np.mean(ap)
def ap_micro(y_true: np.ndarray, y_score: np.ndarray) -> float:
"""
Micro AP over the entire pool (unchanged).
"""
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="No positive class found in y_true")
return average_precision_score(y_true.ravel(), y_score.ravel())
# ---------------------------
# Recall@k
# ---------------------------
def recall_at_k_micro(y_true: np.ndarray, y_score: np.ndarray, k: int = 5) -> float:
"""
Micro Recall@k (a.k.a. instance-level recall)
– Each *positive instance* counts once, regardless of which query it belongs to.
– Denominator = total #positives across the whole pool.
"""
total_pos = y_true.sum()
if total_pos == 0:
return np.nan
topk = np.argsort(-y_score, axis=1)[:, :k] # indices of top-k per query
rows = np.arange(topk.shape[0])[:, None]
hits = (y_true[rows, topk] > 0).sum() # total #hits (instances)
return hits / total_pos
def recall_at_k_macro(y_true: np.ndarray, y_score: np.ndarray, k: int = 5) -> float:
"""
Macro Recall@k (query-level recall)
– First compute recall per *query* (#hits / #positives in that query).
– Then average across all queries that actually contain β‰₯1 positive.
"""
mask = y_true.sum(axis=1) > 0 # keep only valid queries
if not mask.any():
return np.nan
Yt, Ys = y_true[mask], y_score[mask]
topk = np.argsort(-Ys, axis=1)[:, :k]
rows = np.arange(Yt.shape[0])[:, None]
hits_per_q = (Yt[rows, topk] > 0).sum(axis=1) # shape: (n_queries,)
pos_per_q = Yt.sum(axis=1)
return np.mean(hits_per_q / pos_per_q) # average of query recalls
# ---------------------------
# Precision@k
# ---------------------------
def precision_at_k_micro(y_true: np.ndarray, y_score: np.ndarray, k: int = 5) -> float:
"""
Micro Precision@k (pool-level precision)
– Numerator = total #hits across all queries.
– Denominator = total #predictions considered (n_queries Β· k).
"""
if y_true.size == 0:
return np.nan
topk = np.argsort(-y_score, axis=1)[:, :k]
rows = np.arange(topk.shape[0])[:, None]
hits = (y_true[rows, topk] > 0).sum()
total_pred = y_true.shape[0] * k
return hits / total_pred
def precision_at_k_macro(y_true: np.ndarray, y_score: np.ndarray, k: int = 5) -> float:
"""
Macro Precision@k (query-level precision)
– Compute precision = (#hits / k) for each query, **including those with zero positives**,
then average.
"""
if y_true.size == 0:
return np.nan
topk = np.argsort(-y_score, axis=1)[:, :k]
rows = np.arange(topk.shape[0])[:, None]
rel = y_true[rows, topk] > 0 # shape: (n_queries, k)
precision_per_q = rel.mean(axis=1) # mean over k positions
return precision_per_q.mean()
# helper methods
def bootstrap(
metric_fn: Callable[[np.ndarray, np.ndarray], float],
y_true: np.ndarray,
y_score: np.ndarray,
n: int = 1000,
rng=None,
) -> dict[str, float]:
rng = np.random.default_rng(rng)
idx = np.arange(len(y_true))
vals: list[float] = []
while len(vals) < n:
sample = rng.choice(idx, size=len(idx), replace=True)
t = y_true[sample]
s = y_score[sample]
if t.sum() == 0: # no positive at all β†’ resample
continue
vals.append(metric_fn(t, s))
result = np.asarray(vals)
# get 95% confidence interval
lo, hi = np.percentile(result, [2.5, 97.5])
return {"mean": result.mean(), "low": lo, "high": hi}
def evaluate_with_ranx(
pred_rels: set[BinaryRelation],
target_rels: set[BinaryRelation],
metrics: list[str],
include_queries_without_gold: bool = True,
) -> dict[str, float]:
# lazy import to not require ranx via requirements.txt
import ranx
all_rels = set(pred_rels) | set(target_rels)
all_heads = {rel.head for rel in all_rels}
head2id = {head: f"q_{idx}" for idx, head in enumerate(sorted(all_heads))}
tail_and_label2id = {(ann.tail, ann.label): f"d_{idx}" for idx, ann in enumerate(all_rels)}
qrels_dict: dict[str, dict[str, int]] = defaultdict(dict) # {query_id: {doc_id: 1}}
run_dict: dict[str, dict[str, float]] = defaultdict(dict) # {query_id: {doc_id: score}}
for target_rel in target_rels:
query_id = head2id[target_rel.head]
doc_id = tail_and_label2id[(target_rel.tail, target_rel.label)]
if target_rel.score != 1.0:
raise ValueError(
f"target score must be 1.0, but got {target_rel.score} for {target_rel}"
)
qrels_dict[query_id][doc_id] = 1
for pred_rel in pred_rels:
query_id = head2id[pred_rel.head]
doc_id = tail_and_label2id[(pred_rel.tail, pred_rel.label)]
run_dict[query_id][doc_id] = pred_rel.score
if include_queries_without_gold:
# add missing query ids to rund_dict and qrels_dict
for query_id in set(head2id.values()) - set(qrels_dict):
qrels_dict[query_id] = {}
# evaluate
qrels = ranx.Qrels(qrels_dict)
run = ranx.Run(run_dict)
results = ranx.evaluate(qrels, run, metrics, make_comparable=True)
return results
def deduplicate_relations(
relations: Iterable[BinaryRelation], caption: str
) -> Set[BinaryRelation]:
pred2scores = defaultdict(set)
for ann in relations:
pred2scores[ann].add(round(ann.score, 4))
# warning for duplicates
preds_with_duplicates = [ann for ann, scores in pred2scores.items() if len(scores) > 1]
if len(preds_with_duplicates) > 0:
logger.warning(
f"there are {len(preds_with_duplicates)} {caption} with duplicates: "
f"{preds_with_duplicates}. We will take the max score for each annotation."
)
# take the max score for each annotation
result = {ann.copy(score=max(scores)) for ann, scores in pred2scores.items()}
return result
def construct_y_true_and_score(
preds: Iterable[BinaryRelation], targets: Iterable[BinaryRelation]
) -> Tuple[np.ndarray, np.ndarray]:
# helper constructs
all_anns = set(preds) | set(targets)
head2relations = defaultdict(list)
for ann in all_anns:
head2relations[ann.head].append(ann)
target2score = {rel: rel.score for rel in targets}
pred2score = {rel: rel.score for rel in preds}
max_len = max(len(relations) for relations in head2relations.values())
target_rows, pred_rows = [], []
for query in head2relations:
relations = head2relations[query]
# get a very small, random score for missing predictions. Or should we use 0.0 as before? or NEG_INF?
missing_pred_score = NEG_INF # np.random.uniform(0.0, 0.001) #0.0 #
missing_target_score = 0
query_scores = [
(target2score.get(ann, missing_target_score), pred2score.get(ann, missing_pred_score))
for ann in relations
]
# sort by descending order of prediction score
query_scores_sorted = np.array(sorted(query_scores, key=lambda x: x[1], reverse=True))
# pad with zeros so every row has the same length
pad_width = max_len - len(query_scores)
query_target = np.pad(
query_scores_sorted[:, 0], (0, pad_width), constant_values=missing_target_score
)
query_pred = np.pad(
query_scores_sorted[:, 1], (0, pad_width), constant_values=missing_pred_score
)
target_rows.append(query_target)
pred_rows.append(query_pred)
y_true = np.vstack(target_rows) # shape (n_queries, max_len)
y_score = np.vstack(pred_rows)
return y_true, y_score
class SemanticallySameRankingMetric(DocumentMetric):
def __init__(
self,
layer: str,
label: Optional[str] = None,
add_reversed: bool = False,
require_positive_gold: bool = False,
bootstrap_n: Optional[int] = None,
k_values: Optional[List[int]] = None,
return_coverage: bool = True,
show_as_markdown: bool = False,
use_ranx: bool = False,
add_stats_to_result: bool = False,
) -> None:
super().__init__()
self.layer = layer
self.label = label
self.add_reversed = add_reversed
self.require_positive_gold = require_positive_gold
self.bootstrap_n = bootstrap_n
self.k_values = k_values if k_values is not None else [1, 5, 10]
self.return_coverage = return_coverage
self.show_as_markdown = show_as_markdown
self.use_ranx = use_ranx
self.add_stats_to_result = add_stats_to_result
self.metrics = {
"macro_ndcg": macro_ndcg,
"macro_mrr": true_mrr,
"macro_map": macro_map,
"micro_ap": ap_micro,
}
for name, func in [
("macro_ndcg", macro_ndcg),
("micro_recall", recall_at_k_micro),
("micro_precision", precision_at_k_micro),
("macro_recall", recall_at_k_macro),
("macro_precision", precision_at_k_macro),
]:
for k in self.k_values:
self.metrics[f"{name}@{k}"] = partial(func, k=k) # type: ignore
self.ranx_metrics = ["map", "mrr", "ndcg"]
for name in ["recall", "precision", "ndcg"]:
for k in self.k_values:
self.ranx_metrics.append(f"{name}@{k}")
def reset(self) -> None:
"""
Reset the metric to its initial state.
"""
self._preds: List[BinaryRelation] = []
self._targets: List[BinaryRelation] = []
def _update(self, document):
layer = document[self.layer]
ann: BinaryRelation
for ann in layer:
if self.label is None or ann.label == self.label:
if ann.score > 0.0:
self._targets.append(ann.copy())
if self.add_reversed:
self._targets.append(ann.copy(head=ann.tail, tail=ann.head))
for ann in layer.predictions:
if self.label is None or ann.label == self.label:
if ann.score > 0.0:
self._preds.append(ann.copy())
if self.add_reversed:
self._preds.append(ann.copy(head=ann.tail, tail=ann.head))
def _compute(self):
# take the max score for each annotation
preds_deduplicated = deduplicate_relations(self._preds, "predictions")
targets_deduplicated = deduplicate_relations(self._targets, "targets")
stats = {
"gold": len(targets_deduplicated),
"preds": len(preds_deduplicated),
"queries": len(
set(ann.head for ann in targets_deduplicated)
| set(ann.head for ann in preds_deduplicated)
),
}
if self.use_ranx:
if self.bootstrap_n is not None:
raise ValueError(
"Ranx does not support bootstrapping. Please set bootstrap_n=None."
)
scores = evaluate_with_ranx(
preds_deduplicated,
targets_deduplicated,
metrics=self.ranx_metrics,
include_queries_without_gold=not self.require_positive_gold,
)
if self.add_stats_to_result:
scores.update(stats)
# logger.info(f"results via ranx:\n{pd.Series(ranx_result).sort_index().round(3).to_markdown()}")
df = pd.DataFrame.from_records([scores], index=["score"])
else:
y_true, y_score = construct_y_true_and_score(
preds=preds_deduplicated, targets=targets_deduplicated
)
# original definition ─ share of queries with β‰₯1 positive
coverage = (y_true.sum(axis=1) > 0).mean()
# keep only queries that actually have at least one gold positive
if self.require_positive_gold:
mask = y_true.sum(axis=1) > 0 # shape: (n_queries,)
y_true = y_true[mask]
y_score = y_score[mask]
if self.bootstrap_n is not None:
scores = {
name: bootstrap(fn, y_true, y_score, n=self.bootstrap_n)
for name, fn in self.metrics.items()
}
if self.add_stats_to_result:
scores["stats"] = stats
df = pd.DataFrame(scores)
else:
scores = {name: fn(y_true, y_score) for name, fn in self.metrics.items()}
if self.add_stats_to_result:
scores.update(stats)
df = pd.DataFrame.from_records([scores], index=["score"])
if self.return_coverage:
scores["coverage"] = coverage
if self.show_as_markdown:
if not self.add_stats_to_result:
logger.info(
logger.info(
f'\nstatistics ({self.layer}):\n{pd.Series(stats, name="value").to_markdown()}'
)
)
logger.info(f"\n{self.layer}:\n{df.round(4).T.to_markdown()}")
return scores