Spaces:
Sleeping
Sleeping
Create app1.py
Browse files
app1.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fitz # PyMuPDF
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import faiss
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
# Initialize summarizer pipeline
|
9 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
10 |
+
|
11 |
+
# Initialize embedding model
|
12 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
13 |
+
|
14 |
+
# Initialize question-answering pipeline
|
15 |
+
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
16 |
+
|
17 |
+
def extract_text_from_pdf(file_path):
|
18 |
+
doc = fitz.open(file_path)
|
19 |
+
text = ""
|
20 |
+
for page in doc:
|
21 |
+
text += page.get_text()
|
22 |
+
return text
|
23 |
+
|
24 |
+
def chunk_text(text, max_chunk_size=500):
|
25 |
+
words = text.split()
|
26 |
+
chunks = []
|
27 |
+
current_chunk = []
|
28 |
+
current_length = 0
|
29 |
+
for word in words:
|
30 |
+
current_chunk.append(word)
|
31 |
+
current_length += len(word) + 1 # +1 for space
|
32 |
+
if current_length >= max_chunk_size:
|
33 |
+
chunks.append(" ".join(current_chunk))
|
34 |
+
current_chunk = []
|
35 |
+
current_length = 0
|
36 |
+
if current_chunk:
|
37 |
+
chunks.append(" ".join(current_chunk))
|
38 |
+
return chunks
|
39 |
+
|
40 |
+
def build_faiss_index(chunks):
|
41 |
+
embeddings = embedding_model.encode(chunks)
|
42 |
+
dimension = embeddings.shape[1]
|
43 |
+
index = faiss.IndexFlatL2(dimension)
|
44 |
+
index.add(np.array(embeddings))
|
45 |
+
return index, embeddings
|
46 |
+
|
47 |
+
def retrieve_relevant_chunks(query, chunks, index, embeddings, top_k=3):
|
48 |
+
query_embedding = embedding_model.encode([query])
|
49 |
+
distances, indices = index.search(np.array(query_embedding), top_k)
|
50 |
+
retrieved_chunks = [chunks[i] for i in indices[0]]
|
51 |
+
return retrieved_chunks
|
52 |
+
|
53 |
+
def summarize_pdf(file_path):
|
54 |
+
raw_text = extract_text_from_pdf(file_path)
|
55 |
+
max_chunk = 1024
|
56 |
+
chunks = [raw_text[i:i+max_chunk] for i in range(0, len(raw_text), max_chunk)]
|
57 |
+
summary = ""
|
58 |
+
for chunk in chunks:
|
59 |
+
res = summarizer(chunk, max_length=130, min_length=30, do_sample=False)
|
60 |
+
summary += res[0]['summary_text'] + " "
|
61 |
+
return summary.strip()
|
62 |
+
|
63 |
+
def answer_question(file_path, question):
|
64 |
+
raw_text = extract_text_from_pdf(file_path)
|
65 |
+
chunks = chunk_text(raw_text)
|
66 |
+
index, embeddings = build_faiss_index(chunks)
|
67 |
+
relevant_chunks = retrieve_relevant_chunks(question, chunks, index, embeddings)
|
68 |
+
context = " ".join(relevant_chunks)
|
69 |
+
answer = qa_pipeline(question=question, context=context)
|
70 |
+
return answer['answer']
|
71 |
+
|
72 |
+
# Gradio UI
|
73 |
+
with gr.Blocks() as demo:
|
74 |
+
gr.Markdown("# PDF Summarizer and Q&A")
|
75 |
+
with gr.Tab("Summarization"):
|
76 |
+
with gr.Row():
|
77 |
+
pdf_input = gr.File(type="filepath", label="Upload a PDF")
|
78 |
+
summarize_button = gr.Button("Summarize")
|
79 |
+
summary_output = gr.Textbox(label="Summary", lines=10)
|
80 |
+
summarize_button.click(fn=summarize_pdf, inputs=pdf_input, outputs=summary_output)
|
81 |
+
|
82 |
+
with gr.Tab("Question Answering"):
|
83 |
+
with gr.Row():
|
84 |
+
pdf_input_qa = gr.File(type="filepath", label="Upload a PDF")
|
85 |
+
question_input = gr.Textbox(label="Enter your question")
|
86 |
+
answer_button = gr.Button("Get Answer")
|
87 |
+
answer_output = gr.Textbox(label="Answer", lines=2)
|
88 |
+
answer_button.click(fn=answer_question, inputs=[pdf_input_qa, question_input], outputs=answer_output)
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
demo.launch()
|