Spaces:
Running
Running
File size: 12,220 Bytes
5e1a30c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
"""
Analytics Dashboard for Epic 2 Demo
===================================
Creates interactive Plotly visualizations for real-time performance monitoring
and component health analysis.
"""
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pandas as pd
import streamlit as st
from datetime import datetime, timedelta
from typing import Dict, Any, List, Optional
import time
from collections import deque
class PerformanceTracker:
"""Tracks performance metrics over time for analytics"""
def __init__(self, max_history: int = 100):
self.max_history = max_history
self.query_history = deque(maxlen=max_history)
self.stage_history = deque(maxlen=max_history)
def add_query(self, query: str, performance: Dict[str, Any]):
"""Add a query performance record"""
timestamp = datetime.now()
record = {
'timestamp': timestamp,
'query': query,
'total_time_ms': performance.get('total_time_ms', 0),
'stages': performance.get('stages', {}),
'component_details': performance.get('component_details', {})
}
self.query_history.append(record)
# Add stage-specific records
for stage_name, stage_data in performance.get('stages', {}).items():
stage_record = {
'timestamp': timestamp,
'query': query,
'stage': stage_name,
'time_ms': stage_data.get('time_ms', 0),
'results': stage_data.get('results', 0)
}
self.stage_history.append(stage_record)
def get_recent_queries(self, limit: int = 10) -> List[Dict]:
"""Get recent query records"""
return list(self.query_history)[-limit:]
def get_stage_performance_df(self) -> pd.DataFrame:
"""Get stage performance as DataFrame"""
if not self.stage_history:
return pd.DataFrame()
return pd.DataFrame(self.stage_history)
def get_query_performance_df(self) -> pd.DataFrame:
"""Get query performance as DataFrame"""
if not self.query_history:
return pd.DataFrame()
return pd.DataFrame(self.query_history)
class AnalyticsDashboard:
"""Main analytics dashboard with interactive charts"""
def __init__(self):
self.tracker = PerformanceTracker()
def add_query_data(self, query: str, performance: Dict[str, Any]):
"""Add query data to tracking"""
self.tracker.add_query(query, performance)
def create_stage_performance_chart(self) -> go.Figure:
"""Create interactive stage performance chart"""
df = self.tracker.get_stage_performance_df()
if df.empty:
# Return empty chart with placeholder
fig = go.Figure()
fig.add_annotation(
text="No performance data available yet.<br>Run some queries to see analytics!",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False, font=dict(size=16)
)
fig.update_layout(
title="Stage Performance Over Time",
xaxis_title="Time",
yaxis_title="Duration (ms)",
height=400
)
return fig
# Create interactive line chart
fig = px.line(
df,
x='timestamp',
y='time_ms',
color='stage',
title="Stage Performance Over Time",
labels={'time_ms': 'Duration (ms)', 'timestamp': 'Time'},
hover_data=['query', 'results']
)
# Customize layout
fig.update_layout(
height=400,
hovermode='x unified',
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
)
)
return fig
def create_query_performance_chart(self) -> go.Figure:
"""Create query performance overview chart"""
df = self.tracker.get_query_performance_df()
if df.empty:
fig = go.Figure()
fig.add_annotation(
text="No query data available yet.<br>Run some queries to see performance trends!",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False, font=dict(size=16)
)
fig.update_layout(
title="Query Performance Trends",
xaxis_title="Query",
yaxis_title="Total Time (ms)",
height=400
)
return fig
# Create bar chart of recent queries
recent_queries = df.tail(20) # Last 20 queries
fig = go.Figure()
fig.add_trace(go.Bar(
x=list(range(len(recent_queries))),
y=recent_queries['total_time_ms'],
text=[f"{q[:30]}..." if len(q) > 30 else q for q in recent_queries['query']],
textposition='auto',
hovertemplate='<b>Query:</b> %{text}<br><b>Time:</b> %{y:.0f}ms<extra></extra>',
marker_color='rgba(46, 134, 171, 0.7)'
))
fig.update_layout(
title="Recent Query Performance",
xaxis_title="Query Index",
yaxis_title="Total Time (ms)",
height=400,
showlegend=False
)
return fig
def create_stage_breakdown_chart(self) -> go.Figure:
"""Create stage breakdown pie chart for latest query"""
df = self.tracker.get_stage_performance_df()
if df.empty:
fig = go.Figure()
fig.add_annotation(
text="No stage data available yet.<br>Run a query to see stage breakdown!",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False, font=dict(size=16)
)
fig.update_layout(
title="Stage Breakdown (Latest Query)",
height=400
)
return fig
# Get latest query's stage data
latest_timestamp = df['timestamp'].max()
latest_data = df[df['timestamp'] == latest_timestamp]
# Create pie chart
fig = go.Figure(data=[go.Pie(
labels=latest_data['stage'],
values=latest_data['time_ms'],
hole=0.3,
textinfo='label+percent',
hovertemplate='<b>%{label}</b><br>Time: %{value:.0f}ms<br>Percentage: %{percent}<extra></extra>'
)])
fig.update_layout(
title="Stage Breakdown (Latest Query)",
height=400,
showlegend=True,
legend=dict(
orientation="v",
yanchor="middle",
y=0.5,
xanchor="left",
x=1.01
)
)
return fig
def create_component_health_chart(self) -> go.Figure:
"""Create component health monitoring chart"""
df = self.tracker.get_query_performance_df()
if df.empty:
fig = go.Figure()
fig.add_annotation(
text="No component data available yet.<br>Run queries to see component health!",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False, font=dict(size=16)
)
fig.update_layout(
title="Component Health Status",
height=400
)
return fig
# Calculate component health metrics
recent_queries = df.tail(10)
# Mock component health data (in real implementation, this would come from actual metrics)
components = ['Database', 'Retriever', 'Generator', 'Neural Reranker', 'Graph Engine']
health_scores = [95, 98, 97, 93, 96] # Mock scores
# Create gauge-style chart
fig = go.Figure()
colors = ['green' if score >= 95 else 'yellow' if score >= 90 else 'red' for score in health_scores]
fig.add_trace(go.Bar(
x=components,
y=health_scores,
marker_color=colors,
text=[f"{score}%" for score in health_scores],
textposition='auto',
hovertemplate='<b>%{x}</b><br>Health: %{y}%<extra></extra>'
))
fig.update_layout(
title="Component Health Status",
xaxis_title="Component",
yaxis_title="Health Score (%)",
yaxis=dict(range=[0, 100]),
height=400,
showlegend=False
)
return fig
def create_performance_summary_metrics(self) -> Dict[str, Any]:
"""Create performance summary metrics"""
df = self.tracker.get_query_performance_df()
if df.empty:
return {
'total_queries': 0,
'avg_response_time': 0,
'fastest_query': 0,
'slowest_query': 0,
'success_rate': 0
}
return {
'total_queries': len(df),
'avg_response_time': df['total_time_ms'].mean(),
'fastest_query': df['total_time_ms'].min(),
'slowest_query': df['total_time_ms'].max(),
'success_rate': 100 # Assuming all queries succeed for now
}
def render_dashboard(self):
"""Render the complete analytics dashboard"""
st.header("π Real-Time Analytics Dashboard")
# Performance summary metrics
metrics = self.create_performance_summary_metrics()
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Queries", metrics['total_queries'])
with col2:
st.metric("Avg Response Time", f"{metrics['avg_response_time']:.0f}ms")
with col3:
st.metric("Fastest Query", f"{metrics['fastest_query']:.0f}ms")
with col4:
st.metric("Success Rate", f"{metrics['success_rate']:.1f}%")
# Performance charts
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(
self.create_stage_performance_chart(),
use_container_width=True
)
with col2:
st.plotly_chart(
self.create_query_performance_chart(),
use_container_width=True
)
# Additional charts
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(
self.create_stage_breakdown_chart(),
use_container_width=True
)
with col2:
st.plotly_chart(
self.create_component_health_chart(),
use_container_width=True
)
# Query history table
if not self.tracker.query_history:
st.info("No query history available yet. Run some queries to see analytics!")
else:
st.subheader("π Recent Query History")
recent_queries = self.tracker.get_recent_queries(10)
history_data = []
for record in recent_queries:
history_data.append({
'Time': record['timestamp'].strftime('%H:%M:%S'),
'Query': record['query'][:50] + '...' if len(record['query']) > 50 else record['query'],
'Response Time (ms)': f"{record['total_time_ms']:.0f}",
'Status': 'β
Success'
})
st.table(pd.DataFrame(history_data))
# Global analytics dashboard instance
analytics_dashboard = AnalyticsDashboard() |