Spaces:
Running
Running
File size: 14,761 Bytes
5e1a30c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
"""
Migration Utilities for Epic 2 Demo Database
============================================
Utilities to migrate existing pickle-based cache to persistent database
and handle data migrations between versions.
"""
import logging
import pickle
import json
import time
from pathlib import Path
from typing import Dict, Any, List, Optional, Tuple
import numpy as np
from .database_manager import DatabaseManager, get_database_manager
from .knowledge_cache import KnowledgeCache
logger = logging.getLogger(__name__)
class CacheMigrator:
"""Handles migration from pickle cache to database"""
def __init__(self, db_manager: Optional[DatabaseManager] = None):
"""
Initialize cache migrator
Args:
db_manager: Database manager instance (creates default if None)
"""
self.db_manager = db_manager or get_database_manager()
self.knowledge_cache = KnowledgeCache()
def migrate_cache_to_database(self, pdf_files: List[Path],
processor_config: Dict[str, Any],
embedder_config: Dict[str, Any]) -> bool:
"""
Migrate existing pickle cache to database
Args:
pdf_files: List of PDF files that were processed
processor_config: Document processor configuration
embedder_config: Embedder configuration
Returns:
True if migration successful
"""
logger.info("Starting migration from pickle cache to database...")
try:
# Check if cache is valid and has data
# Note: knowledge_cache.is_cache_valid expects (pdf_files, embedder_config) but
# create_embedder_config_hash expects a system object
# For migration, we'll use a simplified validation
if not self.knowledge_cache.is_valid():
logger.warning("Pickle cache is not valid or missing")
return False
# Load documents and embeddings from pickle cache
documents, embeddings = self.knowledge_cache.load_knowledge_base()
if not documents or embeddings is None:
logger.warning("No data found in pickle cache")
return False
logger.info(f"Loaded {len(documents)} documents and {embeddings.shape} embeddings from pickle cache")
# Convert documents to expected format
converted_docs = self._convert_documents_format(documents, embeddings)
logger.info(f"Converted {len(converted_docs)} documents for database save")
# Save to database
success = self.db_manager.save_documents_and_embeddings(
converted_docs, pdf_files, processor_config, embedder_config
)
if success:
logger.info("Migration to database completed successfully")
# Create backup of pickle cache before clearing
self._backup_pickle_cache()
# Optionally clear pickle cache
logger.info("Migration successful - pickle cache backed up")
return True
else:
logger.error("Failed to save migrated data to database")
return False
except Exception as e:
logger.error(f"Cache migration failed: {e}")
return False
def _convert_documents_format(self, documents: List[Any], embeddings: np.ndarray) -> List[Dict[str, Any]]:
"""Convert documents from pickle format to database format"""
converted_docs = []
for i, doc in enumerate(documents):
# Handle different document formats
if hasattr(doc, '__dict__'):
# Object format
converted_doc = {
'content': getattr(doc, 'content', ''),
'metadata': getattr(doc, 'metadata', {}),
'confidence': getattr(doc, 'confidence', 0.8),
'embedding': embeddings[i] if i < len(embeddings) else None
}
elif isinstance(doc, dict):
# Dictionary format
converted_doc = {
'content': doc.get('content', ''),
'metadata': doc.get('metadata', {}),
'confidence': doc.get('confidence', 0.8),
'embedding': embeddings[i] if i < len(embeddings) else None
}
else:
# String format
converted_doc = {
'content': str(doc),
'metadata': {},
'confidence': 0.8,
'embedding': embeddings[i] if i < len(embeddings) else None
}
# Ensure metadata has required fields
if 'metadata' not in converted_doc:
converted_doc['metadata'] = {}
# Extract source from metadata or create default
if 'source' not in converted_doc['metadata']:
# Try to get source from existing metadata
if hasattr(doc, 'metadata') and isinstance(doc.metadata, dict) and 'source' in doc.metadata:
converted_doc['metadata']['source'] = doc.metadata['source']
elif isinstance(doc, dict) and 'metadata' in doc and isinstance(doc['metadata'], dict) and 'source' in doc['metadata']:
converted_doc['metadata']['source'] = doc['metadata']['source']
else:
converted_doc['metadata']['source'] = f'document_{i}.pdf'
if 'page' not in converted_doc['metadata']:
converted_doc['metadata']['page'] = 1
converted_docs.append(converted_doc)
logger.info(f"Converted {len(converted_docs)} documents to database format")
return converted_docs
def _backup_pickle_cache(self) -> None:
"""Create backup of pickle cache files"""
try:
cache_dir = self.knowledge_cache.cache_dir
backup_dir = cache_dir / "backup"
backup_dir.mkdir(exist_ok=True)
timestamp = int(time.time())
# Backup main cache files
for cache_file in [self.knowledge_cache.documents_file,
self.knowledge_cache.embeddings_file,
self.knowledge_cache.metadata_file]:
if cache_file.exists():
backup_file = backup_dir / f"{cache_file.name}.{timestamp}.bak"
backup_file.write_bytes(cache_file.read_bytes())
logger.info(f"Pickle cache backed up to {backup_dir}")
except Exception as e:
logger.warning(f"Failed to backup pickle cache: {e}")
def verify_migration(self, pdf_files: List[Path]) -> bool:
"""
Verify that migration was successful by comparing data
Args:
pdf_files: List of PDF files to verify
Returns:
True if migration verification successful
"""
try:
# Load data from database
db_docs, db_embeddings = self.db_manager.load_documents_and_embeddings(pdf_files)
if not db_docs or db_embeddings is None:
logger.error("No data found in database after migration")
return False
# Basic checks
if len(db_docs) == 0:
logger.error("No documents found in database")
return False
if db_embeddings.shape[0] != len(db_docs):
logger.error(f"Embedding count mismatch: {db_embeddings.shape[0]} vs {len(db_docs)}")
return False
# Check that embeddings are valid
if np.isnan(db_embeddings).any():
logger.error("Database contains invalid embeddings (NaN values)")
return False
logger.info(f"Migration verification successful: {len(db_docs)} documents, {db_embeddings.shape} embeddings")
return True
except Exception as e:
logger.error(f"Migration verification failed: {e}")
return False
class DatabaseUpgrader:
"""Handles database schema upgrades and version migrations"""
def __init__(self, db_manager: Optional[DatabaseManager] = None):
"""
Initialize database upgrader
Args:
db_manager: Database manager instance
"""
self.db_manager = db_manager or get_database_manager()
def get_database_version(self) -> str:
"""Get current database version"""
try:
with self.db_manager.get_session() as session:
from .database_schema import SystemCache
version_cache = session.query(SystemCache).filter(
SystemCache.cache_key == 'database_version'
).first()
if version_cache:
return version_cache.cache_value.get('version', '1.0')
else:
# First time setup
return '1.0'
except Exception as e:
logger.warning(f"Could not get database version: {e}")
return '1.0'
def set_database_version(self, version: str) -> None:
"""Set database version"""
try:
with self.db_manager.get_session() as session:
from .database_schema import SystemCache
version_cache = session.query(SystemCache).filter(
SystemCache.cache_key == 'database_version'
).first()
if version_cache:
version_cache.cache_value = {'version': version}
version_cache.is_valid = True
else:
version_cache = SystemCache(
cache_key='database_version',
cache_type='system',
cache_value={'version': version},
cache_hash=self.db_manager._hash_config({'version': version})
)
session.add(version_cache)
session.commit()
except Exception as e:
logger.error(f"Could not set database version: {e}")
def upgrade_database(self) -> bool:
"""
Upgrade database to latest version
Returns:
True if upgrade successful
"""
current_version = self.get_database_version()
target_version = '1.0' # Current version
logger.info(f"Database version check: current={current_version}, target={target_version}")
if current_version == target_version:
logger.info("Database is already at latest version")
return True
try:
# Apply version-specific upgrades
if current_version < '1.0':
self._upgrade_to_1_0()
# Set final version
self.set_database_version(target_version)
logger.info(f"Database upgraded to version {target_version}")
return True
except Exception as e:
logger.error(f"Database upgrade failed: {e}")
return False
def _upgrade_to_1_0(self) -> None:
"""Upgrade to version 1.0"""
logger.info("Upgrading database to version 1.0...")
# Version 1.0 is the initial version, so just ensure tables exist
from .database_schema import DatabaseSchema
DatabaseSchema.create_all_tables(self.db_manager.engine)
logger.info("Database upgrade to 1.0 complete")
def migrate_existing_cache(pdf_files: List[Path], processor_config: Dict[str, Any],
embedder_config: Dict[str, Any]) -> bool:
"""
High-level function to migrate existing cache to database
Args:
pdf_files: List of PDF files
processor_config: Document processor configuration
embedder_config: Embedder configuration
Returns:
True if migration successful
"""
logger.info("Starting cache migration process...")
try:
# Initialize migrator
migrator = CacheMigrator()
# Attempt migration
success = migrator.migrate_cache_to_database(pdf_files, processor_config, embedder_config)
if success:
# Verify migration
if migrator.verify_migration(pdf_files):
logger.info("Cache migration completed and verified successfully")
return True
else:
logger.error("Migration verification failed")
return False
else:
logger.error("Cache migration failed")
return False
except Exception as e:
logger.error(f"Cache migration process failed: {e}")
return False
def upgrade_database() -> bool:
"""
High-level function to upgrade database to latest version
Returns:
True if upgrade successful
"""
logger.info("Starting database upgrade process...")
try:
upgrader = DatabaseUpgrader()
return upgrader.upgrade_database()
except Exception as e:
logger.error(f"Database upgrade process failed: {e}")
return False
def get_migration_status() -> Dict[str, Any]:
"""
Get status of migration and database
Returns:
Dictionary with migration status information
"""
try:
db_manager = get_database_manager()
upgrader = DatabaseUpgrader(db_manager)
knowledge_cache = KnowledgeCache()
status = {
'database_exists': db_manager.is_database_populated(),
'database_version': upgrader.get_database_version(),
'database_stats': db_manager.get_database_stats(),
'pickle_cache_exists': knowledge_cache.is_valid(),
'pickle_cache_info': knowledge_cache.get_cache_info()
}
return status
except Exception as e:
logger.error(f"Failed to get migration status: {e}")
return {'error': str(e)} |