File size: 7,114 Bytes
0242f02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#!/usr/bin/env python3
"""
Model Setup Script for Enhanced RAG Demo

This script handles automatic downloading and setup of required models
for deployment environments like HuggingFace Spaces where models may not
be pre-installed.

Usage:
    python scripts/setup_models.py

Environment Variables:
    SKIP_MODEL_DOWNLOAD: Set to '1' to skip model downloads
    SPACY_MODEL: Override default spaCy model (default: en_core_web_sm)
"""

import os
import sys
import logging
import subprocess
import time
from pathlib import Path
from typing import List, Dict, Any, Optional

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

def check_spacy_model(model_name: str = "en_core_web_sm") -> bool:
    """
    Check if spaCy model is available.
    
    Args:
        model_name: Name of the spaCy model to check
        
    Returns:
        True if model is available, False otherwise
    """
    try:
        import spacy
        spacy.load(model_name)
        logger.info(f"βœ… spaCy model '{model_name}' is available")
        return True
    except OSError:
        logger.warning(f"❌ spaCy model '{model_name}' not found")
        return False
    except ImportError:
        logger.warning("❌ spaCy not installed")
        return False
    except Exception as e:
        logger.warning(f"❌ Error checking spaCy model: {e}")
        return False

def download_spacy_model(model_name: str = "en_core_web_sm", timeout: int = 300) -> bool:
    """
    Download spaCy model.
    
    Args:
        model_name: Name of the spaCy model to download
        timeout: Download timeout in seconds
        
    Returns:
        True if download successful, False otherwise
    """
    try:
        logger.info(f"πŸ“₯ Downloading spaCy model '{model_name}'...")
        
        result = subprocess.run([
            sys.executable, "-m", "spacy", "download", model_name
        ], capture_output=True, text=True, timeout=timeout)
        
        if result.returncode == 0:
            logger.info(f"βœ… Successfully downloaded spaCy model '{model_name}'")
            return True
        else:
            logger.error(f"❌ Failed to download spaCy model: {result.stderr}")
            return False
            
    except subprocess.TimeoutExpired:
        logger.error(f"❌ spaCy model download timed out after {timeout} seconds")
        return False
    except Exception as e:
        logger.error(f"❌ Error downloading spaCy model: {e}")
        return False

def setup_cache_directories() -> None:
    """
    Set up cache directories for models with proper permissions.
    """
    cache_dirs = [
        os.environ.get('TRANSFORMERS_CACHE', '/tmp/.cache/huggingface/transformers'),
        os.environ.get('HF_HOME', '/tmp/.cache/huggingface'),
        os.environ.get('SENTENCE_TRANSFORMERS_HOME', '/tmp/.cache/sentence-transformers'),
    ]
    
    for cache_dir in cache_dirs:
        try:
            os.makedirs(cache_dir, exist_ok=True)
            logger.info(f"πŸ“ Created cache directory: {cache_dir}")
        except Exception as e:
            logger.warning(f"⚠️ Could not create cache directory {cache_dir}: {e}")

def validate_python_packages() -> Dict[str, bool]:
    """
    Validate that required Python packages are installed.
    
    Returns:
        Dictionary mapping package names to availability status
    """
    required_packages = {
        'rank_bm25': 'rank_bm25',
        'pdfplumber': 'pdfplumber', 
        'sentence_transformers': 'sentence_transformers',
        'transformers': 'transformers',
        'spacy': 'spacy',
        'huggingface_hub': 'huggingface_hub',
        'faiss': 'faiss',
        'accelerate': 'accelerate'  # Optional but recommended
    }
    
    status = {}
    
    for display_name, import_name in required_packages.items():
        try:
            __import__(import_name)
            status[display_name] = True
            logger.info(f"βœ… {display_name} is available")
        except ImportError:
            status[display_name] = False
            logger.error(f"❌ {display_name} is not installed")
    
    return status

def main() -> int:
    """
    Main setup function.
    
    Returns:
        Exit code (0 for success, 1 for failure)
    """
    logger.info("πŸš€ Starting Enhanced RAG Demo model setup...")
    
    # Check if model download should be skipped
    skip_download = os.environ.get('SKIP_MODEL_DOWNLOAD', '').lower() in ('1', 'true', 'yes')
    if skip_download:
        logger.info("⏭️ Skipping model downloads (SKIP_MODEL_DOWNLOAD set)")
        return 0
    
    success = True
    
    # 1. Validate Python packages
    logger.info("πŸ“¦ Validating Python packages...")
    package_status = validate_python_packages()
    
    critical_packages = ['rank_bm25', 'pdfplumber', 'sentence_transformers', 'transformers', 'spacy']
    missing_critical = [pkg for pkg in critical_packages if not package_status.get(pkg, False)]
    
    if missing_critical:
        logger.error(f"❌ Critical packages missing: {', '.join(missing_critical)}")
        logger.error("Please install missing packages with: pip install -r requirements.txt")
        success = False
    
    # 2. Setup cache directories
    logger.info("πŸ“ Setting up cache directories...")
    setup_cache_directories()
    
    # 3. Handle spaCy model
    spacy_model = os.environ.get('SPACY_MODEL', 'en_core_web_sm')
    logger.info(f"πŸ”€ Checking spaCy model: {spacy_model}")
    
    if package_status.get('spacy', False):
        if not check_spacy_model(spacy_model):
            logger.info(f"πŸ“₯ Attempting to download spaCy model '{spacy_model}'...")
            if not download_spacy_model(spacy_model):
                logger.error(f"❌ Failed to download spaCy model '{spacy_model}'")
                logger.warning("⚠️ Entity extraction features may be limited")
                # Don't fail completely - this is non-critical for basic functionality
    else:
        logger.warning("⚠️ spaCy not available - entity extraction will be disabled")
    
    # 4. Test model loading (basic validation)
    if package_status.get('sentence_transformers', False):
        try:
            logger.info("πŸ§ͺ Testing sentence-transformers model loading...")
            from sentence_transformers import SentenceTransformer
            
            # Try to load a small model for validation
            model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', cache_folder='/tmp/.cache/sentence-transformers')
            logger.info("βœ… sentence-transformers model loading successful")
            del model  # Free memory
        except Exception as e:
            logger.warning(f"⚠️ sentence-transformers model loading failed: {e}")
    
    if success:
        logger.info("πŸŽ‰ Model setup completed successfully!")
        return 0
    else:
        logger.error("πŸ’₯ Model setup encountered errors")
        return 1

if __name__ == "__main__":
    exit_code = main()
    sys.exit(exit_code)