Spaces:
Running
Running
File size: 7,114 Bytes
0242f02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
#!/usr/bin/env python3
"""
Model Setup Script for Enhanced RAG Demo
This script handles automatic downloading and setup of required models
for deployment environments like HuggingFace Spaces where models may not
be pre-installed.
Usage:
python scripts/setup_models.py
Environment Variables:
SKIP_MODEL_DOWNLOAD: Set to '1' to skip model downloads
SPACY_MODEL: Override default spaCy model (default: en_core_web_sm)
"""
import os
import sys
import logging
import subprocess
import time
from pathlib import Path
from typing import List, Dict, Any, Optional
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def check_spacy_model(model_name: str = "en_core_web_sm") -> bool:
"""
Check if spaCy model is available.
Args:
model_name: Name of the spaCy model to check
Returns:
True if model is available, False otherwise
"""
try:
import spacy
spacy.load(model_name)
logger.info(f"β
spaCy model '{model_name}' is available")
return True
except OSError:
logger.warning(f"β spaCy model '{model_name}' not found")
return False
except ImportError:
logger.warning("β spaCy not installed")
return False
except Exception as e:
logger.warning(f"β Error checking spaCy model: {e}")
return False
def download_spacy_model(model_name: str = "en_core_web_sm", timeout: int = 300) -> bool:
"""
Download spaCy model.
Args:
model_name: Name of the spaCy model to download
timeout: Download timeout in seconds
Returns:
True if download successful, False otherwise
"""
try:
logger.info(f"π₯ Downloading spaCy model '{model_name}'...")
result = subprocess.run([
sys.executable, "-m", "spacy", "download", model_name
], capture_output=True, text=True, timeout=timeout)
if result.returncode == 0:
logger.info(f"β
Successfully downloaded spaCy model '{model_name}'")
return True
else:
logger.error(f"β Failed to download spaCy model: {result.stderr}")
return False
except subprocess.TimeoutExpired:
logger.error(f"β spaCy model download timed out after {timeout} seconds")
return False
except Exception as e:
logger.error(f"β Error downloading spaCy model: {e}")
return False
def setup_cache_directories() -> None:
"""
Set up cache directories for models with proper permissions.
"""
cache_dirs = [
os.environ.get('TRANSFORMERS_CACHE', '/tmp/.cache/huggingface/transformers'),
os.environ.get('HF_HOME', '/tmp/.cache/huggingface'),
os.environ.get('SENTENCE_TRANSFORMERS_HOME', '/tmp/.cache/sentence-transformers'),
]
for cache_dir in cache_dirs:
try:
os.makedirs(cache_dir, exist_ok=True)
logger.info(f"π Created cache directory: {cache_dir}")
except Exception as e:
logger.warning(f"β οΈ Could not create cache directory {cache_dir}: {e}")
def validate_python_packages() -> Dict[str, bool]:
"""
Validate that required Python packages are installed.
Returns:
Dictionary mapping package names to availability status
"""
required_packages = {
'rank_bm25': 'rank_bm25',
'pdfplumber': 'pdfplumber',
'sentence_transformers': 'sentence_transformers',
'transformers': 'transformers',
'spacy': 'spacy',
'huggingface_hub': 'huggingface_hub',
'faiss': 'faiss',
'accelerate': 'accelerate' # Optional but recommended
}
status = {}
for display_name, import_name in required_packages.items():
try:
__import__(import_name)
status[display_name] = True
logger.info(f"β
{display_name} is available")
except ImportError:
status[display_name] = False
logger.error(f"β {display_name} is not installed")
return status
def main() -> int:
"""
Main setup function.
Returns:
Exit code (0 for success, 1 for failure)
"""
logger.info("π Starting Enhanced RAG Demo model setup...")
# Check if model download should be skipped
skip_download = os.environ.get('SKIP_MODEL_DOWNLOAD', '').lower() in ('1', 'true', 'yes')
if skip_download:
logger.info("βοΈ Skipping model downloads (SKIP_MODEL_DOWNLOAD set)")
return 0
success = True
# 1. Validate Python packages
logger.info("π¦ Validating Python packages...")
package_status = validate_python_packages()
critical_packages = ['rank_bm25', 'pdfplumber', 'sentence_transformers', 'transformers', 'spacy']
missing_critical = [pkg for pkg in critical_packages if not package_status.get(pkg, False)]
if missing_critical:
logger.error(f"β Critical packages missing: {', '.join(missing_critical)}")
logger.error("Please install missing packages with: pip install -r requirements.txt")
success = False
# 2. Setup cache directories
logger.info("π Setting up cache directories...")
setup_cache_directories()
# 3. Handle spaCy model
spacy_model = os.environ.get('SPACY_MODEL', 'en_core_web_sm')
logger.info(f"π€ Checking spaCy model: {spacy_model}")
if package_status.get('spacy', False):
if not check_spacy_model(spacy_model):
logger.info(f"π₯ Attempting to download spaCy model '{spacy_model}'...")
if not download_spacy_model(spacy_model):
logger.error(f"β Failed to download spaCy model '{spacy_model}'")
logger.warning("β οΈ Entity extraction features may be limited")
# Don't fail completely - this is non-critical for basic functionality
else:
logger.warning("β οΈ spaCy not available - entity extraction will be disabled")
# 4. Test model loading (basic validation)
if package_status.get('sentence_transformers', False):
try:
logger.info("π§ͺ Testing sentence-transformers model loading...")
from sentence_transformers import SentenceTransformer
# Try to load a small model for validation
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', cache_folder='/tmp/.cache/sentence-transformers')
logger.info("β
sentence-transformers model loading successful")
del model # Free memory
except Exception as e:
logger.warning(f"β οΈ sentence-transformers model loading failed: {e}")
if success:
logger.info("π Model setup completed successfully!")
return 0
else:
logger.error("π₯ Model setup encountered errors")
return 1
if __name__ == "__main__":
exit_code = main()
sys.exit(exit_code) |