File size: 17,679 Bytes
b5246f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#!/usr/bin/env python3
"""
PDFPlumber-based Parser

Advanced PDF parsing using pdfplumber for better structure detection
and cleaner text extraction.

Author: Arthur Passuello
"""

import re
import pdfplumber
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Any


class PDFPlumberParser:
    """Advanced PDF parser using pdfplumber for structure-aware extraction."""
    
    def __init__(self, target_chunk_size: int = 1400, min_chunk_size: int = 800,
                 max_chunk_size: int = 2000):
        """Initialize PDFPlumber parser."""
        self.target_chunk_size = target_chunk_size
        self.min_chunk_size = min_chunk_size
        self.max_chunk_size = max_chunk_size
        
        # Trash content patterns
        self.trash_patterns = [
            r'Creative Commons.*?License',
            r'International License.*?authors',
            r'RISC-V International',
            r'Visit.*?for further',
            r'editors to suggest.*?corrections',
            r'released under.*?license',
            r'\.{5,}',  # Long dots (TOC artifacts)
            r'^\d+\s*$',  # Page numbers alone
        ]
        
    def extract_with_structure(self, pdf_path: Path) -> List[Dict]:
        """Extract PDF content with structure awareness using pdfplumber."""
        chunks = []
        
        with pdfplumber.open(pdf_path) as pdf:
            current_section = None
            current_text = []
            
            for page_num, page in enumerate(pdf.pages):
                # Extract text with formatting info
                page_content = self._extract_page_content(page, page_num + 1)
                
                for element in page_content:
                    if element['type'] == 'header':
                        # Save previous section if exists
                        if current_text:
                            chunk_text = '\n\n'.join(current_text)
                            if self._is_valid_chunk(chunk_text):
                                chunks.extend(self._create_chunks(
                                    chunk_text, 
                                    current_section or "Document",
                                    page_num
                                ))
                        
                        # Start new section
                        current_section = element['text']
                        current_text = []
                        
                    elif element['type'] == 'content':
                        # Add to current section
                        if self._is_valid_content(element['text']):
                            current_text.append(element['text'])
            
            # Don't forget last section
            if current_text:
                chunk_text = '\n\n'.join(current_text)
                if self._is_valid_chunk(chunk_text):
                    chunks.extend(self._create_chunks(
                        chunk_text,
                        current_section or "Document",
                        len(pdf.pages)
                    ))
        
        return chunks
    
    def _extract_page_content(self, page: Any, page_num: int) -> List[Dict]:
        """Extract structured content from a page."""
        content = []
        
        # Get all text with positioning
        chars = page.chars
        if not chars:
            return content
        
        # Group by lines
        lines = []
        current_line = []
        current_y = None
        
        for char in sorted(chars, key=lambda x: (x['top'], x['x0'])):
            if current_y is None or abs(char['top'] - current_y) < 2:
                current_line.append(char)
                current_y = char['top']
            else:
                if current_line:
                    lines.append(current_line)
                current_line = [char]
                current_y = char['top']
        
        if current_line:
            lines.append(current_line)
        
        # Analyze each line
        for line in lines:
            line_text = ''.join(char['text'] for char in line).strip()
            
            if not line_text:
                continue
            
            # Detect headers by font size
            avg_font_size = sum(char.get('size', 12) for char in line) / len(line)
            is_bold = any(char.get('fontname', '').lower().count('bold') > 0 for char in line)
            
            # Classify content
            if avg_font_size > 14 or is_bold:
                # Likely a header
                if self._is_valid_header(line_text):
                    content.append({
                        'type': 'header',
                        'text': line_text,
                        'font_size': avg_font_size,
                        'page': page_num
                    })
            else:
                # Regular content
                content.append({
                    'type': 'content',
                    'text': line_text,
                    'font_size': avg_font_size,
                    'page': page_num
                })
        
        return content
    
    def _is_valid_header(self, text: str) -> bool:
        """Check if text is a valid header."""
        # Skip if too short or too long
        if len(text) < 3 or len(text) > 200:
            return False
        
        # Skip if matches trash patterns
        for pattern in self.trash_patterns:
            if re.search(pattern, text, re.IGNORECASE):
                return False
        
        # Valid if starts with number or capital letter
        if re.match(r'^(\d+\.?\d*\s+|[A-Z])', text):
            return True
        
        # Valid if contains keywords
        keywords = ['chapter', 'section', 'introduction', 'conclusion', 'appendix']
        return any(keyword in text.lower() for keyword in keywords)
    
    def _is_valid_content(self, text: str) -> bool:
        """Check if text is valid content (not trash)."""
        # Skip very short text
        if len(text.strip()) < 10:
            return False
        
        # Skip trash patterns
        for pattern in self.trash_patterns:
            if re.search(pattern, text, re.IGNORECASE):
                return False
        
        return True
    
    def _is_valid_chunk(self, text: str) -> bool:
        """Check if chunk text is valid."""
        # Must have minimum length
        if len(text.strip()) < self.min_chunk_size // 2:
            return False
        
        # Must have some alphabetic content
        alpha_chars = sum(1 for c in text if c.isalpha())
        if alpha_chars < len(text) * 0.5:
            return False
        
        return True
    
    def _create_chunks(self, text: str, title: str, page: int) -> List[Dict]:
        """Create chunks from text."""
        chunks = []
        
        # Clean text
        text = self._clean_text(text)
        
        if len(text) <= self.max_chunk_size:
            # Single chunk
            chunks.append({
                'text': text,
                'title': title,
                'page': page,
                'metadata': {
                    'parsing_method': 'pdfplumber',
                    'quality_score': self._calculate_quality_score(text)
                }
            })
        else:
            # Split into chunks
            text_chunks = self._split_text_into_chunks(text)
            for i, chunk_text in enumerate(text_chunks):
                chunks.append({
                    'text': chunk_text,
                    'title': f"{title} (Part {i+1})",
                    'page': page,
                    'metadata': {
                        'parsing_method': 'pdfplumber',
                        'part_number': i + 1,
                        'total_parts': len(text_chunks),
                        'quality_score': self._calculate_quality_score(chunk_text)
                    }
                })
        
        return chunks
    
    def _clean_text(self, text: str) -> str:
        """Clean text from artifacts."""
        # Remove volume headers (e.g., "Volume I: RISC-V Unprivileged ISA V20191213")
        text = re.sub(r'Volume\s+[IVX]+:\s*RISC-V[^V]*V\d{8}\s*', '', text, flags=re.IGNORECASE)
        text = re.sub(r'^\d+\s+Volume\s+[IVX]+:.*?$', '', text, flags=re.MULTILINE)
        
        # Remove document version artifacts
        text = re.sub(r'Document Version \d{8}\s*', '', text, flags=re.IGNORECASE)
        
        # Remove repeated ISA headers
        text = re.sub(r'RISC-V.*?ISA.*?V\d{8}\s*', '', text, flags=re.IGNORECASE)
        text = re.sub(r'The RISC-V Instruction Set Manual\s*', '', text, flags=re.IGNORECASE)
        
        # Remove figure/table references that are standalone
        text = re.sub(r'^(Figure|Table)\s+\d+\.\d+:.*?$', '', text, flags=re.MULTILINE)
        
        # Remove email addresses (often in contributor lists)
        text = re.sub(r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}', '', text)
        
        # Remove URLs
        text = re.sub(r'https?://[^\s]+', '', text)
        
        # Remove page numbers at start/end of lines
        text = re.sub(r'^\d{1,3}\s+', '', text, flags=re.MULTILINE)
        text = re.sub(r'\s+\d{1,3}$', '', text, flags=re.MULTILINE)
        
        # Remove excessive dots (TOC artifacts)
        text = re.sub(r'\.{3,}', '', text)
        
        # Remove standalone numbers (often page numbers or figure numbers)
        text = re.sub(r'^\s*\d+\s*$', '', text, flags=re.MULTILINE)
        
        # Clean up multiple spaces and newlines
        text = re.sub(r'\s{3,}', ' ', text)
        text = re.sub(r'\n{3,}', '\n\n', text)
        text = re.sub(r'[ \t]+', ' ', text)  # Normalize all whitespace
        
        # Remove common boilerplate phrases
        text = re.sub(r'Contains Nonbinding Recommendations\s*', '', text, flags=re.IGNORECASE)
        text = re.sub(r'Guidance for Industry and FDA Staff\s*', '', text, flags=re.IGNORECASE)
        
        return text.strip()
    
    def _split_text_into_chunks(self, text: str) -> List[str]:
        """Split text into chunks at sentence boundaries."""
        sentences = re.split(r'(?<=[.!?])\s+', text)
        chunks = []
        current_chunk = []
        current_size = 0
        
        for sentence in sentences:
            sentence_size = len(sentence)
            
            if current_size + sentence_size > self.target_chunk_size and current_chunk:
                chunks.append(' '.join(current_chunk))
                current_chunk = [sentence]
                current_size = sentence_size
            else:
                current_chunk.append(sentence)
                current_size += sentence_size + 1
        
        if current_chunk:
            chunks.append(' '.join(current_chunk))
        
        return chunks
    
    def _calculate_quality_score(self, text: str) -> float:
        """Calculate quality score for chunk."""
        score = 1.0
        
        # Penalize very short or very long
        if len(text) < self.min_chunk_size:
            score *= 0.8
        elif len(text) > self.max_chunk_size:
            score *= 0.9
        
        # Reward complete sentences
        if text.strip().endswith(('.', '!', '?')):
            score *= 1.1
        
        # Reward technical content
        technical_terms = ['risc', 'instruction', 'register', 'memory', 'processor']
        term_count = sum(1 for term in technical_terms if term in text.lower())
        score *= (1 + term_count * 0.05)
        
        return min(score, 1.0)

    def extract_with_page_coverage(self, pdf_path: Path, pymupdf_pages: List[Dict]) -> List[Dict]:
        """
        Extract content ensuring ALL pages are covered using PyMuPDF page data.
        
        Args:
            pdf_path: Path to PDF file
            pymupdf_pages: Page data from PyMuPDF with page numbers and text
            
        Returns:
            List of chunks covering ALL document pages
        """
        chunks = []
        chunk_id = 0
        
        print(f"πŸ“„ Processing {len(pymupdf_pages)} pages with PDFPlumber quality extraction...")
        
        with pdfplumber.open(str(pdf_path)) as pdf:
            for pymupdf_page in pymupdf_pages:
                page_num = pymupdf_page['page_number']  # 1-indexed from PyMuPDF
                page_idx = page_num - 1  # Convert to 0-indexed for PDFPlumber
                
                if page_idx < len(pdf.pages):
                    # Extract with PDFPlumber quality from this specific page
                    pdfplumber_page = pdf.pages[page_idx]
                    page_text = pdfplumber_page.extract_text()
                    
                    if page_text and page_text.strip():
                        # Clean and chunk the page text
                        cleaned_text = self._clean_text(page_text)
                        
                        if len(cleaned_text) >= 100:  # Minimum meaningful content
                            # Create chunks from this page
                            page_chunks = self._create_page_chunks(
                                cleaned_text, page_num, chunk_id
                            )
                            chunks.extend(page_chunks)
                            chunk_id += len(page_chunks)
                            
                            if len(chunks) % 50 == 0:  # Progress indicator
                                print(f"   Processed {page_num} pages, created {len(chunks)} chunks")
        
        print(f"βœ… Full coverage: {len(chunks)} chunks from {len(pymupdf_pages)} pages")
        return chunks
    
    def _create_page_chunks(self, page_text: str, page_num: int, start_chunk_id: int) -> List[Dict]:
        """Create properly sized chunks from a single page's content."""
        # Clean and validate page text first
        cleaned_text = self._ensure_complete_sentences(page_text)
        
        if not cleaned_text or len(cleaned_text) < 50:
            # Skip pages with insufficient content
            return []
        
        if len(cleaned_text) <= self.max_chunk_size:
            # Single chunk for small pages
            return [{
                'text': cleaned_text,
                'title': f"Page {page_num}",
                'page': page_num,
                'metadata': {
                    'parsing_method': 'pdfplumber_page_coverage',
                    'quality_score': self._calculate_quality_score(cleaned_text),
                    'full_page_coverage': True
                }
            }]
        else:
            # Split large pages into chunks with sentence boundaries
            text_chunks = self._split_text_into_chunks(cleaned_text)
            page_chunks = []
            
            for i, chunk_text in enumerate(text_chunks):
                # Ensure each chunk is complete
                complete_chunk = self._ensure_complete_sentences(chunk_text)
                
                if complete_chunk and len(complete_chunk) >= 100:
                    page_chunks.append({
                        'text': complete_chunk,
                        'title': f"Page {page_num} (Part {i+1})",
                        'page': page_num,
                        'metadata': {
                            'parsing_method': 'pdfplumber_page_coverage',
                            'part_number': i + 1,
                            'total_parts': len(text_chunks),
                            'quality_score': self._calculate_quality_score(complete_chunk),
                            'full_page_coverage': True
                        }
                    })
            
            return page_chunks
    
    def _ensure_complete_sentences(self, text: str) -> str:
        """Ensure text contains only complete sentences."""
        text = text.strip()
        if not text:
            return ""
        
        # Find last complete sentence
        last_sentence_end = -1
        for i, char in enumerate(reversed(text)):
            if char in '.!?:':
                last_sentence_end = len(text) - i
                break
        
        if last_sentence_end > 0:
            # Return text up to last complete sentence
            complete_text = text[:last_sentence_end].strip()
            
            # Ensure it starts properly (capital letter or common starters)
            if complete_text and (complete_text[0].isupper() or 
                                complete_text.startswith(('The ', 'A ', 'An ', 'This ', 'RISC'))):
                return complete_text
        
        # If no complete sentences found, return empty
        return ""

    def parse_document(self, pdf_path: Path, pdf_data: Dict[str, Any] = None) -> List[Dict]:
        """
        Parse document using PDFPlumber (required by HybridParser).
        
        Args:
            pdf_path: Path to PDF file
            pdf_data: PyMuPDF page data to ensure full page coverage
            
        Returns:
            List of chunks with structure preservation across ALL pages
        """
        if pdf_data and 'pages' in pdf_data:
            # Use PyMuPDF page data to ensure full coverage
            return self.extract_with_page_coverage(pdf_path, pdf_data['pages'])
        else:
            # Fallback to structure-based extraction
            return self.extract_with_structure(pdf_path)


def parse_pdf_with_pdfplumber(pdf_path: Path, **kwargs) -> List[Dict]:
    """Main entry point for PDFPlumber parsing."""
    parser = PDFPlumberParser(**kwargs)
    chunks = parser.extract_with_structure(pdf_path)
    
    print(f"PDFPlumber extracted {len(chunks)} chunks")
    
    return chunks