Spaces:
Running
Running
File size: 19,736 Bytes
b5246f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
"""
Adaptive Prompt Engine for Dynamic Context-Aware Prompt Optimization.
This module provides intelligent prompt adaptation based on context quality,
query complexity, and performance requirements.
"""
import logging
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass
from enum import Enum
import numpy as np
from .prompt_templates import (
QueryType,
PromptTemplate,
TechnicalPromptTemplates
)
class ContextQuality(Enum):
"""Context quality levels for adaptive prompting."""
HIGH = "high" # >0.8 relevance, low noise
MEDIUM = "medium" # 0.5-0.8 relevance, moderate noise
LOW = "low" # <0.5 relevance, high noise
class QueryComplexity(Enum):
"""Query complexity levels."""
SIMPLE = "simple" # Single concept, direct answer
MODERATE = "moderate" # Multiple concepts, structured answer
COMPLEX = "complex" # Multi-step reasoning, comprehensive answer
@dataclass
class ContextMetrics:
"""Metrics for evaluating context quality."""
relevance_score: float
noise_ratio: float
chunk_count: int
avg_chunk_length: int
technical_density: float
source_diversity: int
@dataclass
class AdaptivePromptConfig:
"""Configuration for adaptive prompt generation."""
context_quality: ContextQuality
query_complexity: QueryComplexity
max_context_length: int
prefer_concise: bool
include_few_shot: bool
enable_chain_of_thought: bool
confidence_threshold: float
class AdaptivePromptEngine:
"""
Intelligent prompt adaptation engine that optimizes prompts based on:
- Context quality and relevance
- Query complexity and type
- Performance requirements
- User preferences
"""
def __init__(self):
"""Initialize the adaptive prompt engine."""
self.logger = logging.getLogger(__name__)
# Context quality thresholds
self.high_quality_threshold = 0.8
self.medium_quality_threshold = 0.5
# Query complexity indicators
self.complex_keywords = {
"implementation": ["implement", "build", "create", "develop", "setup"],
"comparison": ["compare", "difference", "versus", "vs", "better"],
"analysis": ["analyze", "evaluate", "assess", "study", "examine"],
"multi_step": ["process", "procedure", "steps", "how to", "guide"]
}
# Length optimization thresholds
self.token_limits = {
"concise": 512,
"standard": 1024,
"detailed": 2048,
"comprehensive": 4096
}
def analyze_context_quality(self, chunks: List[Dict[str, Any]]) -> ContextMetrics:
"""
Analyze the quality of retrieved context chunks.
Args:
chunks: List of context chunks with metadata
Returns:
ContextMetrics with quality assessment
"""
if not chunks:
return ContextMetrics(
relevance_score=0.0,
noise_ratio=1.0,
chunk_count=0,
avg_chunk_length=0,
technical_density=0.0,
source_diversity=0
)
# Calculate relevance score (using confidence scores if available)
relevance_scores = []
for chunk in chunks:
# Use confidence score if available, otherwise use a heuristic
if 'confidence' in chunk:
relevance_scores.append(chunk['confidence'])
elif 'score' in chunk:
relevance_scores.append(chunk['score'])
else:
# Heuristic: longer chunks with technical terms are more relevant
content = chunk.get('content', chunk.get('text', ''))
tech_terms = self._count_technical_terms(content)
relevance_scores.append(min(tech_terms / 10.0, 1.0))
avg_relevance = np.mean(relevance_scores) if relevance_scores else 0.0
# Calculate noise ratio (fragments, repetitive content)
noise_count = 0
total_chunks = len(chunks)
for chunk in chunks:
content = chunk.get('content', chunk.get('text', ''))
if self._is_noisy_chunk(content):
noise_count += 1
noise_ratio = noise_count / total_chunks if total_chunks > 0 else 0.0
# Calculate average chunk length
chunk_lengths = []
for chunk in chunks:
content = chunk.get('content', chunk.get('text', ''))
chunk_lengths.append(len(content))
avg_chunk_length = int(np.mean(chunk_lengths)) if chunk_lengths else 0
# Calculate technical density
technical_density = self._calculate_technical_density(chunks)
# Calculate source diversity
sources = set()
for chunk in chunks:
source = chunk.get('metadata', {}).get('source', 'unknown')
sources.add(source)
source_diversity = len(sources)
return ContextMetrics(
relevance_score=avg_relevance,
noise_ratio=noise_ratio,
chunk_count=len(chunks),
avg_chunk_length=avg_chunk_length,
technical_density=technical_density,
source_diversity=source_diversity
)
def determine_query_complexity(self, query: str) -> QueryComplexity:
"""
Determine the complexity level of a query.
Args:
query: User's question
Returns:
QueryComplexity level
"""
query_lower = query.lower()
complexity_score = 0
# Check for complex keywords
for category, keywords in self.complex_keywords.items():
if any(keyword in query_lower for keyword in keywords):
complexity_score += 1
# Check for multiple questions or concepts
if '?' in query[:-1]: # Multiple question marks (excluding the last one)
complexity_score += 1
if any(word in query_lower for word in ["and", "or", "also", "additionally", "furthermore"]):
complexity_score += 1
# Check query length
word_count = len(query.split())
if word_count > 20:
complexity_score += 1
elif word_count > 10:
complexity_score += 0.5
# Determine complexity level
if complexity_score >= 2:
return QueryComplexity.COMPLEX
elif complexity_score >= 1:
return QueryComplexity.MODERATE
else:
return QueryComplexity.SIMPLE
def generate_adaptive_config(
self,
query: str,
context_chunks: List[Dict[str, Any]],
max_tokens: int = 2048,
prefer_speed: bool = False
) -> AdaptivePromptConfig:
"""
Generate adaptive prompt configuration based on context and query analysis.
Args:
query: User's question
context_chunks: Retrieved context chunks
max_tokens: Maximum token limit
prefer_speed: Whether to optimize for speed over quality
Returns:
AdaptivePromptConfig with optimized settings
"""
# Analyze context quality
context_metrics = self.analyze_context_quality(context_chunks)
# Determine context quality level
if context_metrics.relevance_score >= self.high_quality_threshold:
context_quality = ContextQuality.HIGH
elif context_metrics.relevance_score >= self.medium_quality_threshold:
context_quality = ContextQuality.MEDIUM
else:
context_quality = ContextQuality.LOW
# Determine query complexity
query_complexity = self.determine_query_complexity(query)
# Adapt configuration based on analysis
config = AdaptivePromptConfig(
context_quality=context_quality,
query_complexity=query_complexity,
max_context_length=max_tokens,
prefer_concise=prefer_speed,
include_few_shot=self._should_include_few_shot(context_quality, query_complexity),
enable_chain_of_thought=self._should_enable_cot(query_complexity),
confidence_threshold=self._get_confidence_threshold(context_quality)
)
return config
def create_adaptive_prompt(
self,
query: str,
context_chunks: List[Dict[str, Any]],
config: Optional[AdaptivePromptConfig] = None
) -> Dict[str, str]:
"""
Create an adaptive prompt optimized for the specific query and context.
Args:
query: User's question
context_chunks: Retrieved context chunks
config: Optional configuration (auto-generated if None)
Returns:
Dict with optimized 'system' and 'user' prompts
"""
if config is None:
config = self.generate_adaptive_config(query, context_chunks)
# Get base template
query_type = TechnicalPromptTemplates.detect_query_type(query)
base_template = TechnicalPromptTemplates.get_template_for_query(query)
# Adapt template based on configuration
adapted_template = self._adapt_template(base_template, config)
# Format context with optimization
formatted_context = self._format_context_adaptive(context_chunks, config)
# Create prompt with adaptive formatting
prompt = TechnicalPromptTemplates.format_prompt_with_template(
query=query,
context=formatted_context,
template=adapted_template,
include_few_shot=config.include_few_shot
)
# Add chain-of-thought if enabled
if config.enable_chain_of_thought:
prompt = self._add_chain_of_thought(prompt, query_type)
return prompt
def _adapt_template(
self,
base_template: PromptTemplate,
config: AdaptivePromptConfig
) -> PromptTemplate:
"""
Adapt a base template based on configuration.
Args:
base_template: Base prompt template
config: Adaptive configuration
Returns:
Adapted PromptTemplate
"""
# Modify system prompt based on context quality
system_prompt = base_template.system_prompt
if config.context_quality == ContextQuality.LOW:
system_prompt += """
IMPORTANT: The provided context may have limited relevance. Focus on:
- Only use information that directly relates to the question
- Clearly state if information is insufficient
- Avoid making assumptions beyond the provided context
- Be explicit about confidence levels"""
elif config.context_quality == ContextQuality.HIGH:
system_prompt += """
CONTEXT QUALITY: High-quality, relevant context is provided. You can:
- Provide comprehensive, detailed answers
- Make reasonable inferences from the context
- Include related technical details and examples
- Reference multiple sources confidently"""
# Modify answer guidelines based on complexity and preferences
answer_guidelines = base_template.answer_guidelines
if config.prefer_concise:
answer_guidelines += "\n\nResponse style: Be concise and focus on essential information. Aim for clarity over comprehensiveness."
if config.query_complexity == QueryComplexity.COMPLEX:
answer_guidelines += "\n\nComplex query handling: Break down your answer into clear sections. Use numbered steps for procedures."
return PromptTemplate(
system_prompt=system_prompt,
context_format=base_template.context_format,
query_format=base_template.query_format,
answer_guidelines=answer_guidelines,
few_shot_examples=base_template.few_shot_examples
)
def _format_context_adaptive(
self,
chunks: List[Dict[str, Any]],
config: AdaptivePromptConfig
) -> str:
"""
Format context chunks with adaptive optimization.
Args:
chunks: Context chunks to format
config: Adaptive configuration
Returns:
Formatted context string
"""
if not chunks:
return "No relevant context available."
# Filter chunks based on confidence if low quality context
filtered_chunks = chunks
if config.context_quality == ContextQuality.LOW:
filtered_chunks = [
chunk for chunk in chunks
if self._meets_confidence_threshold(chunk, config.confidence_threshold)
]
# Limit context length if needed
if config.prefer_concise:
filtered_chunks = filtered_chunks[:3] # Limit to top 3 chunks
# Format chunks
context_parts = []
for i, chunk in enumerate(filtered_chunks):
chunk_text = chunk.get('content', chunk.get('text', ''))
# Truncate if too long and prefer_concise is True
if config.prefer_concise and len(chunk_text) > 800:
chunk_text = chunk_text[:800] + "..."
metadata = chunk.get('metadata', {})
page_num = metadata.get('page_number', 'unknown')
source = metadata.get('source', 'unknown')
context_parts.append(
f"[chunk_{i+1}] (Page {page_num} from {source}):\n{chunk_text}"
)
return "\n\n---\n\n".join(context_parts)
def _add_chain_of_thought(
self,
prompt: Dict[str, str],
query_type: QueryType
) -> Dict[str, str]:
"""
Add chain-of-thought reasoning to the prompt.
Args:
prompt: Base prompt dictionary
query_type: Type of query
Returns:
Enhanced prompt with chain-of-thought
"""
cot_addition = """
Before providing your final answer, think through this step-by-step:
1. What is the user specifically asking for?
2. What relevant information is available in the context?
3. How should I structure my response for maximum clarity?
4. Are there any important caveats or limitations to mention?
Step-by-step reasoning:"""
prompt["user"] = prompt["user"] + cot_addition
return prompt
def _should_include_few_shot(
self,
context_quality: ContextQuality,
query_complexity: QueryComplexity
) -> bool:
"""Determine if few-shot examples should be included."""
# Include few-shot for complex queries or when context quality is low
if query_complexity == QueryComplexity.COMPLEX:
return True
if context_quality == ContextQuality.LOW:
return True
return False
def _should_enable_cot(self, query_complexity: QueryComplexity) -> bool:
"""Determine if chain-of-thought should be enabled."""
return query_complexity == QueryComplexity.COMPLEX
def _get_confidence_threshold(self, context_quality: ContextQuality) -> float:
"""Get confidence threshold based on context quality."""
thresholds = {
ContextQuality.HIGH: 0.3,
ContextQuality.MEDIUM: 0.5,
ContextQuality.LOW: 0.7
}
return thresholds[context_quality]
def _count_technical_terms(self, text: str) -> int:
"""Count technical terms in text."""
technical_terms = [
"risc-v", "riscv", "cpu", "gpu", "mcu", "interrupt", "register",
"memory", "cache", "pipeline", "instruction", "assembly", "compiler",
"embedded", "freertos", "rtos", "gpio", "uart", "spi", "i2c",
"adc", "dac", "timer", "pwm", "dma", "firmware", "bootloader",
"ai", "ml", "neural", "transformer", "attention", "embedding"
]
text_lower = text.lower()
count = 0
for term in technical_terms:
count += text_lower.count(term)
return count
def _is_noisy_chunk(self, content: str) -> bool:
"""Determine if a chunk is noisy (low quality)."""
# Check for common noise indicators
noise_indicators = [
"table of contents",
"copyright",
"creative commons",
"license",
"all rights reserved",
"terms of use",
"privacy policy"
]
content_lower = content.lower()
# Check for noise indicators
for indicator in noise_indicators:
if indicator in content_lower:
return True
# Check for very short fragments
if len(content) < 100:
return True
# Check for repetitive content
words = content.split()
if len(set(words)) < len(words) * 0.3: # Less than 30% unique words
return True
return False
def _calculate_technical_density(self, chunks: List[Dict[str, Any]]) -> float:
"""Calculate technical density of chunks."""
if not chunks:
return 0.0
total_terms = 0
total_words = 0
for chunk in chunks:
content = chunk.get('content', chunk.get('text', ''))
words = content.split()
total_words += len(words)
total_terms += self._count_technical_terms(content)
return (total_terms / total_words) if total_words > 0 else 0.0
def _meets_confidence_threshold(
self,
chunk: Dict[str, Any],
threshold: float
) -> bool:
"""Check if chunk meets confidence threshold."""
confidence = chunk.get('confidence', chunk.get('score', 0.5))
return confidence >= threshold
# Example usage
if __name__ == "__main__":
# Initialize engine
engine = AdaptivePromptEngine()
# Example context chunks
example_chunks = [
{
"content": "RISC-V is an open-source instruction set architecture...",
"metadata": {"page_number": 1, "source": "riscv-spec.pdf"},
"confidence": 0.9
},
{
"content": "The RISC-V processor supports 32-bit and 64-bit implementations...",
"metadata": {"page_number": 2, "source": "riscv-spec.pdf"},
"confidence": 0.8
}
]
# Example queries
simple_query = "What is RISC-V?"
complex_query = "How do I implement a complete interrupt handling system in RISC-V with nested interrupts and priority management?"
# Generate adaptive prompts
simple_config = engine.generate_adaptive_config(simple_query, example_chunks)
complex_config = engine.generate_adaptive_config(complex_query, example_chunks)
print(f"Simple query complexity: {simple_config.query_complexity}")
print(f"Complex query complexity: {complex_config.query_complexity}")
print(f"Context quality: {simple_config.context_quality}")
print(f"Few-shot enabled: {complex_config.include_few_shot}")
print(f"Chain-of-thought enabled: {complex_config.enable_chain_of_thought}") |