File size: 27,507 Bytes
b5246f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
"""
Answer generation module using Ollama for local LLM inference.

This module provides answer generation with citation support for RAG systems,
optimized for technical documentation Q&A on Apple Silicon.
"""

import json
import logging
from dataclasses import dataclass
from typing import List, Dict, Any, Optional, Generator, Tuple
import ollama
from datetime import datetime
import re
from pathlib import Path
import sys

# Import calibration framework
try:
    from src.confidence_calibration import ConfidenceCalibrator
except ImportError:
    # Fallback - disable calibration for deployment
    ConfidenceCalibrator = None

logger = logging.getLogger(__name__)


@dataclass
class Citation:
    """Represents a citation to a source document chunk."""
    chunk_id: str
    page_number: int
    source_file: str
    relevance_score: float
    text_snippet: str


@dataclass
class GeneratedAnswer:
    """Represents a generated answer with citations."""
    answer: str
    citations: List[Citation]
    confidence_score: float
    generation_time: float
    model_used: str
    context_used: List[Dict[str, Any]]


class AnswerGenerator:
    """
    Generates answers using local LLMs via Ollama with citation support.
    
    Optimized for technical documentation Q&A with:
    - Streaming response support
    - Citation extraction and formatting
    - Confidence scoring
    - Fallback model support
    """
    
    def __init__(
        self,
        primary_model: str = "llama3.2:3b",
        fallback_model: str = "mistral:latest",
        temperature: float = 0.3,
        max_tokens: int = 1024,
        stream: bool = True,
        enable_calibration: bool = True
    ):
        """
        Initialize the answer generator.
        
        Args:
            primary_model: Primary Ollama model to use
            fallback_model: Fallback model for complex queries
            temperature: Generation temperature (0.0-1.0)
            max_tokens: Maximum tokens to generate
            stream: Whether to stream responses
            enable_calibration: Whether to enable confidence calibration
        """
        self.primary_model = primary_model
        self.fallback_model = fallback_model
        self.temperature = temperature
        self.max_tokens = max_tokens
        self.stream = stream
        self.client = ollama.Client()
        
        # Initialize confidence calibration
        self.enable_calibration = enable_calibration
        self.calibrator = None
        if enable_calibration and ConfidenceCalibrator is not None:
            try:
                self.calibrator = ConfidenceCalibrator()
                logger.info("Confidence calibration enabled")
            except Exception as e:
                logger.warning(f"Failed to initialize calibration: {e}")
                self.enable_calibration = False
        elif enable_calibration and ConfidenceCalibrator is None:
            logger.warning("Calibration requested but ConfidenceCalibrator not available - disabling")
            self.enable_calibration = False
        
        # Verify models are available
        self._verify_models()
        
    def _verify_models(self) -> None:
        """Verify that required models are available."""
        try:
            model_list = self.client.list()
            available_models = []
            
            # Handle Ollama's ListResponse object
            if hasattr(model_list, 'models'):
                for model in model_list.models:
                    if hasattr(model, 'model'):
                        available_models.append(model.model)
                    elif isinstance(model, dict) and 'model' in model:
                        available_models.append(model['model'])
            
            if self.primary_model not in available_models:
                logger.warning(f"Primary model {self.primary_model} not found. Available models: {available_models}")
                raise ValueError(f"Model {self.primary_model} not available. Please run: ollama pull {self.primary_model}")
                
            if self.fallback_model not in available_models:
                logger.warning(f"Fallback model {self.fallback_model} not found in: {available_models}")
                
        except Exception as e:
            logger.error(f"Error verifying models: {e}")
            raise
    
    def _create_system_prompt(self) -> str:
        """Create system prompt for technical documentation Q&A."""
        return """You are a technical documentation assistant that provides clear, accurate answers based on the provided context.

CORE PRINCIPLES:
1. ANSWER DIRECTLY: If context contains the answer, provide it clearly and confidently
2. BE CONCISE: Keep responses focused and avoid unnecessary uncertainty language
3. CITE ACCURATELY: Use [chunk_X] citations for every fact from context

RESPONSE GUIDELINES:
- If context has sufficient information β†’ Answer directly and confidently
- If context has partial information β†’ Answer what's available, note what's missing briefly
- If context is irrelevant β†’ Brief refusal: "This information isn't available in the provided documents"

CITATION FORMAT:
- Use [chunk_1], [chunk_2] etc. for all facts from context
- Example: "According to [chunk_1], RISC-V is an open-source architecture."

WHAT TO AVOID:
- Do NOT add details not in context
- Do NOT second-guess yourself if context is clear
- Do NOT use phrases like "does not contain sufficient information" when context clearly answers the question
- Do NOT be overly cautious when context is adequate

Be direct, confident, and accurate. If the context answers the question, provide that answer clearly."""

    def _format_context(self, chunks: List[Dict[str, Any]]) -> str:
        """
        Format retrieved chunks into context for the LLM.
        
        Args:
            chunks: List of retrieved chunks with metadata
            
        Returns:
            Formatted context string
        """
        context_parts = []
        
        for i, chunk in enumerate(chunks):
            chunk_text = chunk.get('content', chunk.get('text', ''))
            page_num = chunk.get('metadata', {}).get('page_number', 'unknown')
            source = chunk.get('metadata', {}).get('source', 'unknown')
            
            context_parts.append(
                f"[chunk_{i+1}] (Page {page_num} from {source}):\n{chunk_text}\n"
            )
        
        return "\n---\n".join(context_parts)
    
    def _extract_citations(self, answer: str, chunks: List[Dict[str, Any]]) -> Tuple[str, List[Citation]]:
        """
        Extract citations from the generated answer and integrate them naturally.
        
        Args:
            answer: Generated answer with [chunk_X] citations
            chunks: Original chunks used for context
            
        Returns:
            Tuple of (natural_answer, citations)
        """
        citations = []
        citation_pattern = r'\[chunk_(\d+)\]'
        
        cited_chunks = set()
        
        # Find [chunk_X] citations and collect cited chunks
        matches = re.finditer(citation_pattern, answer)
        for match in matches:
            chunk_idx = int(match.group(1)) - 1  # Convert to 0-based index
            if 0 <= chunk_idx < len(chunks):
                cited_chunks.add(chunk_idx)
        
        # Create Citation objects for each cited chunk
        chunk_to_source = {}
        for idx in cited_chunks:
            chunk = chunks[idx]
            citation = Citation(
                chunk_id=chunk.get('id', f'chunk_{idx}'),
                page_number=chunk.get('metadata', {}).get('page_number', 0),
                source_file=chunk.get('metadata', {}).get('source', 'unknown'),
                relevance_score=chunk.get('score', 0.0),
                text_snippet=chunk.get('content', chunk.get('text', ''))[:200] + '...'
            )
            citations.append(citation)
            
            # Map chunk reference to natural source name
            source_name = chunk.get('metadata', {}).get('source', 'unknown')
            if source_name != 'unknown':
                # Use just the filename without extension for natural reference
                natural_name = Path(source_name).stem.replace('-', ' ').replace('_', ' ')
                chunk_to_source[f'[chunk_{idx+1}]'] = f"the {natural_name} documentation"
            else:
                chunk_to_source[f'[chunk_{idx+1}]'] = "the documentation"
        
        # Replace [chunk_X] with natural references instead of removing them
        natural_answer = answer
        for chunk_ref, natural_ref in chunk_to_source.items():
            natural_answer = natural_answer.replace(chunk_ref, natural_ref)
        
        # Clean up any remaining unreferenced citations (fallback)
        natural_answer = re.sub(r'\[chunk_\d+\]', 'the documentation', natural_answer)
        
        # Clean up multiple spaces and formatting
        natural_answer = re.sub(r'\s+', ' ', natural_answer).strip()
        
        return natural_answer, citations
    
    def _calculate_confidence(self, answer: str, citations: List[Citation], chunks: List[Dict[str, Any]]) -> float:
        """
        Calculate confidence score for the generated answer with improved calibration.
        
        Args:
            answer: Generated answer
            citations: Extracted citations
            chunks: Retrieved chunks
            
        Returns:
            Confidence score (0.0-1.0)
        """
        # Check if no chunks were provided first
        if not chunks:
            return 0.05  # No context = very low confidence
        
        # Assess context quality to determine base confidence
        scores = [chunk.get('score', 0) for chunk in chunks]
        max_relevance = max(scores) if scores else 0
        avg_relevance = sum(scores) / len(scores) if scores else 0
        
        # Dynamic base confidence based on context quality
        if max_relevance >= 0.8:
            confidence = 0.6  # High-quality context starts high
        elif max_relevance >= 0.6:
            confidence = 0.4  # Good context starts moderately
        elif max_relevance >= 0.4:
            confidence = 0.2  # Fair context starts low
        else:
            confidence = 0.05  # Poor context starts very low
        
        # Strong uncertainty and explicit refusal indicators
        strong_uncertainty_phrases = [
            "does not contain sufficient information",
            "context does not provide", 
            "insufficient information",
            "cannot determine",
            "refuse to answer",
            "cannot answer",
            "does not contain relevant",
            "no relevant context",
            "missing from the provided context"
        ]
        
        # Weak uncertainty phrases that might be in nuanced but correct answers
        weak_uncertainty_phrases = [
            "unclear",
            "conflicting",
            "not specified",
            "questionable", 
            "not contained",
            "no mention",
            "no relevant",
            "missing",
            "not explicitly"
        ]
        
        # Check for strong uncertainty - these should drastically reduce confidence
        if any(phrase in answer.lower() for phrase in strong_uncertainty_phrases):
            return min(0.1, confidence * 0.2)  # Max 10% for explicit refusal/uncertainty
        
        # Check for weak uncertainty - reduce but don't destroy confidence for good context
        weak_uncertainty_count = sum(1 for phrase in weak_uncertainty_phrases if phrase in answer.lower())
        if weak_uncertainty_count > 0:
            if max_relevance >= 0.7 and citations:
                # Good context with citations - reduce less severely
                confidence *= (0.8 ** weak_uncertainty_count)  # Moderate penalty
            else:
                # Poor context - reduce more severely  
                confidence *= (0.5 ** weak_uncertainty_count)  # Strong penalty
        
        # If all chunks have very low relevance scores, cap confidence low
        if max_relevance < 0.4:
            return min(0.08, confidence)  # Max 8% for low relevance context
        
        # Factor 1: Citation quality and coverage
        if citations and chunks:
            citation_ratio = len(citations) / min(len(chunks), 3)
            
            # Strong boost for high-relevance citations
            relevant_chunks = [c for c in chunks if c.get('score', 0) > 0.6]
            if relevant_chunks:
                # Significant boost for citing relevant chunks
                confidence += 0.25 * citation_ratio
                
                # Extra boost if citing majority of relevant chunks
                if len(citations) >= len(relevant_chunks) * 0.5:
                    confidence += 0.15
            else:
                # Small boost for citations to lower-relevance chunks
                confidence += 0.1 * citation_ratio
        else:
            # No citations = reduce confidence unless it's a simple factual statement
            if max_relevance >= 0.8 and len(answer.split()) < 20:
                confidence *= 0.8  # Gentle penalty for uncited but simple answers
            else:
                confidence *= 0.6  # Stronger penalty for complex uncited answers
        
        # Factor 2: Relevance score reinforcement
        if citations:
            avg_citation_relevance = sum(c.relevance_score for c in citations) / len(citations)
            if avg_citation_relevance > 0.8:
                confidence += 0.2  # Strong boost for highly relevant citations
            elif avg_citation_relevance > 0.6:
                confidence += 0.1  # Moderate boost
            elif avg_citation_relevance < 0.4:
                confidence *= 0.6  # Penalty for low-relevance citations
        
        # Factor 3: Context utilization quality
        if chunks:
            avg_chunk_length = sum(len(chunk.get('content', chunk.get('text', ''))) for chunk in chunks) / len(chunks)
            
            # Boost for substantial, high-quality context
            if avg_chunk_length > 200 and max_relevance > 0.8:
                confidence += 0.1
            elif avg_chunk_length < 50:  # Very short chunks
                confidence *= 0.8
        
        # Factor 4: Answer characteristics
        answer_words = len(answer.split())
        if answer_words < 10:
            confidence *= 0.9  # Slight penalty for very short answers
        elif answer_words > 50 and citations:
            confidence += 0.05  # Small boost for detailed cited answers
        
        # Factor 5: High-quality scenario bonus
        if (max_relevance >= 0.8 and citations and 
            len(citations) > 0 and 
            not any(phrase in answer.lower() for phrase in strong_uncertainty_phrases)):
            # This is a high-quality response scenario
            confidence += 0.15
        
        raw_confidence = min(confidence, 0.95)  # Cap at 95% to maintain some uncertainty
        
        # Apply temperature scaling calibration if available
        if self.enable_calibration and self.calibrator and self.calibrator.is_fitted:
            try:
                calibrated_confidence = self.calibrator.calibrate_confidence(raw_confidence)
                logger.debug(f"Confidence calibrated: {raw_confidence:.3f} -> {calibrated_confidence:.3f}")
                return calibrated_confidence
            except Exception as e:
                logger.warning(f"Calibration failed, using raw confidence: {e}")
                
        return raw_confidence
    
    def fit_calibration(self, validation_data: List[Dict[str, Any]]) -> float:
        """
        Fit temperature scaling calibration using validation data.
        
        Args:
            validation_data: List of dicts with 'confidence' and 'correctness' keys
            
        Returns:
            Optimal temperature parameter
        """
        if not self.enable_calibration or not self.calibrator:
            logger.warning("Calibration not enabled or not available")
            return 1.0
            
        try:
            confidences = [item['confidence'] for item in validation_data]
            correctness = [item['correctness'] for item in validation_data]
            
            optimal_temp = self.calibrator.fit_temperature_scaling(confidences, correctness)
            logger.info(f"Calibration fitted with temperature: {optimal_temp:.3f}")
            return optimal_temp
            
        except Exception as e:
            logger.error(f"Failed to fit calibration: {e}")
            return 1.0
    
    def save_calibration(self, filepath: str) -> bool:
        """Save fitted calibration to file."""
        if not self.calibrator or not self.calibrator.is_fitted:
            logger.warning("No fitted calibration to save")
            return False
            
        try:
            calibration_data = {
                'temperature': self.calibrator.temperature,
                'is_fitted': self.calibrator.is_fitted,
                'model_info': {
                    'primary_model': self.primary_model,
                    'fallback_model': self.fallback_model
                }
            }
            
            with open(filepath, 'w') as f:
                json.dump(calibration_data, f, indent=2)
            
            logger.info(f"Calibration saved to {filepath}")
            return True
            
        except Exception as e:
            logger.error(f"Failed to save calibration: {e}")
            return False
    
    def load_calibration(self, filepath: str) -> bool:
        """Load fitted calibration from file."""
        if not self.enable_calibration or not self.calibrator:
            logger.warning("Calibration not enabled")
            return False
            
        try:
            with open(filepath, 'r') as f:
                calibration_data = json.load(f)
            
            self.calibrator.temperature = calibration_data['temperature']
            self.calibrator.is_fitted = calibration_data['is_fitted']
            
            logger.info(f"Calibration loaded from {filepath} (temp: {self.calibrator.temperature:.3f})")
            return True
            
        except Exception as e:
            logger.error(f"Failed to load calibration: {e}")
            return False
    
    def generate(
        self,
        query: str,
        chunks: List[Dict[str, Any]],
        use_fallback: bool = False
    ) -> GeneratedAnswer:
        """
        Generate an answer based on the query and retrieved chunks.
        
        Args:
            query: User's question
            chunks: Retrieved document chunks
            use_fallback: Whether to use fallback model
            
        Returns:
            GeneratedAnswer object with answer, citations, and metadata
        """
        start_time = datetime.now()
        model = self.fallback_model if use_fallback else self.primary_model
        
        # Check for no-context or very poor context situation
        if not chunks or all(len(chunk.get('content', chunk.get('text', ''))) < 20 for chunk in chunks):
            # Handle no-context situation with brief, professional refusal
            user_prompt = f"""Context: [NO RELEVANT CONTEXT FOUND]

Question: {query}

INSTRUCTION: Respond with exactly this brief message:

"This information isn't available in the provided documents."

DO NOT elaborate, explain, or add any other information."""
        else:
            # Format context from chunks
            context = self._format_context(chunks)
            
            # Create concise prompt for faster generation
            user_prompt = f"""Context:
{context}

Question: {query}

Instructions: Answer using only the context above. Cite with [chunk_1], [chunk_2] etc.

Answer:"""
        
        try:
            # Generate response
            response = self.client.chat(
                model=model,
                messages=[
                    {"role": "system", "content": self._create_system_prompt()},
                    {"role": "user", "content": user_prompt}
                ],
                options={
                    "temperature": self.temperature,
                    "num_predict": min(self.max_tokens, 300),  # Reduce max tokens for speed
                    "top_k": 40,  # Optimize sampling for speed
                    "top_p": 0.9,
                    "repeat_penalty": 1.1
                },
                stream=False  # Get complete response for processing
            )
            
            # Extract answer
            answer_with_citations = response['message']['content']
            
            # Extract and clean citations
            clean_answer, citations = self._extract_citations(answer_with_citations, chunks)
            
            # Calculate confidence
            confidence = self._calculate_confidence(clean_answer, citations, chunks)
            
            # Calculate generation time
            generation_time = (datetime.now() - start_time).total_seconds()
            
            return GeneratedAnswer(
                answer=clean_answer,
                citations=citations,
                confidence_score=confidence,
                generation_time=generation_time,
                model_used=model,
                context_used=chunks
            )
            
        except Exception as e:
            logger.error(f"Error generating answer: {e}")
            # Return a fallback response
            return GeneratedAnswer(
                answer="I apologize, but I encountered an error while generating the answer. Please try again.",
                citations=[],
                confidence_score=0.0,
                generation_time=0.0,
                model_used=model,
                context_used=chunks
            )
    
    def generate_stream(
        self,
        query: str,
        chunks: List[Dict[str, Any]],
        use_fallback: bool = False
    ) -> Generator[str, None, GeneratedAnswer]:
        """
        Generate an answer with streaming support.
        
        Args:
            query: User's question
            chunks: Retrieved document chunks
            use_fallback: Whether to use fallback model
            
        Yields:
            Partial answer strings
            
        Returns:
            Final GeneratedAnswer object
        """
        start_time = datetime.now()
        model = self.fallback_model if use_fallback else self.primary_model
        
        # Check for no-context or very poor context situation
        if not chunks or all(len(chunk.get('content', chunk.get('text', ''))) < 20 for chunk in chunks):
            # Handle no-context situation with brief, professional refusal
            user_prompt = f"""Context: [NO RELEVANT CONTEXT FOUND]

Question: {query}

INSTRUCTION: Respond with exactly this brief message:

"This information isn't available in the provided documents."

DO NOT elaborate, explain, or add any other information."""
        else:
            # Format context from chunks
            context = self._format_context(chunks)
            
            # Create concise prompt for faster generation
            user_prompt = f"""Context:
{context}

Question: {query}

Instructions: Answer using only the context above. Cite with [chunk_1], [chunk_2] etc.

Answer:"""
        
        try:
            # Generate streaming response
            stream = self.client.chat(
                model=model,
                messages=[
                    {"role": "system", "content": self._create_system_prompt()},
                    {"role": "user", "content": user_prompt}
                ],
                options={
                    "temperature": self.temperature,
                    "num_predict": min(self.max_tokens, 300),  # Reduce max tokens for speed
                    "top_k": 40,  # Optimize sampling for speed
                    "top_p": 0.9,
                    "repeat_penalty": 1.1
                },
                stream=True
            )
            
            # Collect full answer while streaming
            full_answer = ""
            for chunk in stream:
                if 'message' in chunk and 'content' in chunk['message']:
                    partial = chunk['message']['content']
                    full_answer += partial
                    yield partial
            
            # Process complete answer
            clean_answer, citations = self._extract_citations(full_answer, chunks)
            confidence = self._calculate_confidence(clean_answer, citations, chunks)
            generation_time = (datetime.now() - start_time).total_seconds()
            
            return GeneratedAnswer(
                answer=clean_answer,
                citations=citations,
                confidence_score=confidence,
                generation_time=generation_time,
                model_used=model,
                context_used=chunks
            )
            
        except Exception as e:
            logger.error(f"Error in streaming generation: {e}")
            yield "I apologize, but I encountered an error while generating the answer."
            
            return GeneratedAnswer(
                answer="Error occurred during generation.",
                citations=[],
                confidence_score=0.0,
                generation_time=0.0,
                model_used=model,
                context_used=chunks
            )
    
    def format_answer_with_citations(self, generated_answer: GeneratedAnswer) -> str:
        """
        Format the generated answer with citations for display.
        
        Args:
            generated_answer: GeneratedAnswer object
            
        Returns:
            Formatted string with answer and citations
        """
        formatted = f"{generated_answer.answer}\n\n"
        
        if generated_answer.citations:
            formatted += "**Sources:**\n"
            for i, citation in enumerate(generated_answer.citations, 1):
                formatted += f"{i}. {citation.source_file} (Page {citation.page_number})\n"
        
        formatted += f"\n*Confidence: {generated_answer.confidence_score:.1%} | "
        formatted += f"Model: {generated_answer.model_used} | "
        formatted += f"Time: {generated_answer.generation_time:.2f}s*"
        
        return formatted


if __name__ == "__main__":
    # Example usage
    generator = AnswerGenerator()
    
    # Example chunks (would come from retrieval system)
    example_chunks = [
        {
            "id": "chunk_1",
            "content": "RISC-V is an open-source instruction set architecture (ISA) based on reduced instruction set computer (RISC) principles.",
            "metadata": {"page_number": 1, "source": "riscv-spec.pdf"},
            "score": 0.95
        },
        {
            "id": "chunk_2", 
            "content": "The RISC-V ISA is designed to support a wide range of implementations including 32-bit, 64-bit, and 128-bit variants.",
            "metadata": {"page_number": 2, "source": "riscv-spec.pdf"},
            "score": 0.89
        }
    ]
    
    # Generate answer
    result = generator.generate(
        query="What is RISC-V?",
        chunks=example_chunks
    )
    
    # Display formatted result
    print(generator.format_answer_with_citations(result))