File size: 20,350 Bytes
b5246f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
"""
Chain-of-Thought Reasoning Engine for Complex Technical Queries.

This module provides structured reasoning capabilities for complex technical
questions that require multi-step analysis and implementation guidance.
"""

from typing import Dict, List, Optional, Any, Tuple
from dataclasses import dataclass
from enum import Enum
import re

from .prompt_templates import QueryType, PromptTemplate


class ReasoningStep(Enum):
    """Types of reasoning steps in chain-of-thought."""
    ANALYSIS = "analysis"
    DECOMPOSITION = "decomposition"
    SYNTHESIS = "synthesis"
    VALIDATION = "validation"
    IMPLEMENTATION = "implementation"


@dataclass
class ChainStep:
    """Represents a single step in chain-of-thought reasoning."""
    step_type: ReasoningStep
    description: str
    prompt_addition: str
    requires_context: bool = True


class ChainOfThoughtEngine:
    """
    Engine for generating chain-of-thought reasoning prompts for complex technical queries.
    
    Features:
    - Multi-step reasoning for complex implementations
    - Context-aware step generation
    - Query type specific reasoning chains
    - Validation and error checking steps
    """
    
    def __init__(self):
        """Initialize the chain-of-thought engine."""
        self.reasoning_chains = self._initialize_reasoning_chains()
    
    def _initialize_reasoning_chains(self) -> Dict[QueryType, List[ChainStep]]:
        """Initialize reasoning chains for different query types."""
        return {
            QueryType.IMPLEMENTATION: [
                ChainStep(
                    step_type=ReasoningStep.ANALYSIS,
                    description="Analyze the implementation requirements",
                    prompt_addition="""
First, let me analyze what needs to be implemented:
1. What is the specific goal or functionality required?
2. What are the key components or modules involved?
3. Are there any hardware or software constraints mentioned?"""
                ),
                ChainStep(
                    step_type=ReasoningStep.DECOMPOSITION,
                    description="Break down into implementation steps",
                    prompt_addition="""
Next, let me break this down into logical implementation steps:
1. What are the prerequisites and dependencies?
2. What is the logical sequence of implementation?
3. Which steps are critical and which are optional?"""
                ),
                ChainStep(
                    step_type=ReasoningStep.SYNTHESIS,
                    description="Synthesize the complete solution",
                    prompt_addition="""
Now I'll synthesize the complete solution:
1. How do the individual steps connect together?
2. What code examples or configurations are needed?
3. What are the key integration points?"""
                ),
                ChainStep(
                    step_type=ReasoningStep.VALIDATION,
                    description="Consider validation and error handling",
                    prompt_addition="""
Finally, let me consider validation and potential issues:
1. How can we verify the implementation works?
2. What are common pitfalls or error conditions?
3. What debugging or troubleshooting steps are important?"""
                )
            ],
            
            QueryType.COMPARISON: [
                ChainStep(
                    step_type=ReasoningStep.ANALYSIS,
                    description="Analyze items being compared",
                    prompt_addition="""
Let me start by analyzing what's being compared:
1. What are the specific items or concepts being compared?
2. What aspects or dimensions are relevant for comparison?
3. What context or use case should guide the comparison?"""
                ),
                ChainStep(
                    step_type=ReasoningStep.DECOMPOSITION,
                    description="Break down comparison criteria",
                    prompt_addition="""
Next, let me identify the key comparison criteria:
1. What are the technical specifications or features to compare?
2. What are the performance characteristics?
3. What are the practical considerations (cost, complexity, etc.)?"""
                ),
                ChainStep(
                    step_type=ReasoningStep.SYNTHESIS,
                    description="Synthesize comparison results",
                    prompt_addition="""
Now I'll synthesize the comparison:
1. How do the items compare on each criterion?
2. What are the key trade-offs and differences?
3. What recommendations can be made for different scenarios?"""
                )
            ],
            
            QueryType.TROUBLESHOOTING: [
                ChainStep(
                    step_type=ReasoningStep.ANALYSIS,
                    description="Analyze the problem",
                    prompt_addition="""
Let me start by analyzing the problem:
1. What are the specific symptoms or error conditions?
2. What system or component is affected?
3. What was the expected vs actual behavior?"""
                ),
                ChainStep(
                    step_type=ReasoningStep.DECOMPOSITION,
                    description="Identify potential root causes",
                    prompt_addition="""
Next, let me identify potential root causes:
1. What are the most likely causes based on the symptoms?
2. What system components could be involved?
3. What external factors might contribute to the issue?"""
                ),
                ChainStep(
                    step_type=ReasoningStep.VALIDATION,
                    description="Develop diagnostic approach",
                    prompt_addition="""
Now I'll develop a diagnostic approach:
1. What tests or checks can isolate the root cause?
2. What is the recommended sequence of diagnostic steps?
3. How can we verify the fix once implemented?"""
                )
            ],
            
            QueryType.HARDWARE_CONSTRAINT: [
                ChainStep(
                    step_type=ReasoningStep.ANALYSIS,
                    description="Analyze hardware requirements",
                    prompt_addition="""
Let me analyze the hardware requirements:
1. What are the specific hardware resources needed?
2. What are the performance requirements?
3. What are the power and size constraints?"""
                ),
                ChainStep(
                    step_type=ReasoningStep.DECOMPOSITION,
                    description="Break down resource utilization",
                    prompt_addition="""
Next, let me break down resource utilization:
1. How much memory (RAM/Flash) is required?
2. What are the processing requirements (CPU/DSP)?
3. What I/O and peripheral requirements exist?"""
                ),
                ChainStep(
                    step_type=ReasoningStep.SYNTHESIS,
                    description="Evaluate feasibility and alternatives",
                    prompt_addition="""
Now I'll evaluate feasibility:
1. Can the requirements be met with the available hardware?
2. What optimizations might be needed?
3. What are alternative approaches if constraints are exceeded?"""
                )
            ]
        }
    
    def generate_chain_of_thought_prompt(
        self,
        query: str,
        query_type: QueryType,
        context: str,
        base_template: PromptTemplate
    ) -> Dict[str, str]:
        """
        Generate a chain-of-thought enhanced prompt.
        
        Args:
            query: User's question
            query_type: Type of query
            context: Retrieved context
            base_template: Base prompt template
            
        Returns:
            Enhanced prompt with chain-of-thought reasoning
        """
        # Get reasoning chain for query type
        reasoning_chain = self.reasoning_chains.get(query_type, [])
        
        if not reasoning_chain:
            # Fall back to generic reasoning for unsupported types
            reasoning_chain = self._generate_generic_reasoning_chain(query)
        
        # Build chain-of-thought prompt
        cot_prompt = self._build_cot_prompt(reasoning_chain, query, context)
        
        # Enhance system prompt
        enhanced_system = base_template.system_prompt + """

CHAIN-OF-THOUGHT REASONING: You will approach this question using structured reasoning.
Work through each step methodically before providing your final answer.
Show your reasoning process clearly, then provide a comprehensive final answer."""
        
        # Enhance user prompt
        enhanced_user = f"""{base_template.context_format.format(context=context)}

{base_template.query_format.format(query=query)}

{cot_prompt}

{base_template.answer_guidelines}

After working through your reasoning, provide your final answer in the requested format."""
        
        return {
            "system": enhanced_system,
            "user": enhanced_user
        }
    
    def _build_cot_prompt(
        self,
        reasoning_chain: List[ChainStep],
        query: str,
        context: str
    ) -> str:
        """
        Build the chain-of-thought prompt section.
        
        Args:
            reasoning_chain: List of reasoning steps
            query: User's question
            context: Retrieved context
            
        Returns:
            Chain-of-thought prompt text
        """
        cot_sections = [
            "REASONING PROCESS:",
            "Work through this step-by-step using the following reasoning framework:",
            ""
        ]
        
        for i, step in enumerate(reasoning_chain, 1):
            cot_sections.append(f"Step {i}: {step.description}")
            cot_sections.append(step.prompt_addition)
            cot_sections.append("")
        
        cot_sections.extend([
            "STRUCTURED REASONING:",
            "Now work through each step above, referencing the provided context where relevant.",
            "Use [chunk_X] citations for your reasoning at each step.",
            ""
        ])
        
        return "\n".join(cot_sections)
    
    def _generate_generic_reasoning_chain(self, query: str) -> List[ChainStep]:
        """
        Generate a generic reasoning chain for unsupported query types.
        
        Args:
            query: User's question
            
        Returns:
            List of generic reasoning steps
        """
        # Analyze query complexity to determine appropriate steps
        complexity_indicators = {
            "multi_part": ["and", "also", "additionally", "furthermore"],
            "causal": ["why", "because", "cause", "reason"],
            "conditional": ["if", "when", "unless", "provided that"],
            "comparative": ["better", "worse", "compare", "versus", "vs"]
        }
        
        query_lower = query.lower()
        steps = []
        
        # Always start with analysis
        steps.append(ChainStep(
            step_type=ReasoningStep.ANALYSIS,
            description="Analyze the question",
            prompt_addition="""
Let me start by analyzing the question:
1. What is the core question being asked?
2. What context or domain knowledge is needed?
3. Are there multiple parts to this question?"""
        ))
        
        # Add decomposition for complex queries
        if any(indicator in query_lower for indicators in complexity_indicators.values() for indicator in indicators):
            steps.append(ChainStep(
                step_type=ReasoningStep.DECOMPOSITION,
                description="Break down the question",
                prompt_addition="""
Let me break this down into components:
1. What are the key concepts or elements involved?
2. How do these elements relate to each other?
3. What information do I need to address each part?"""
            ))
        
        # Always end with synthesis
        steps.append(ChainStep(
            step_type=ReasoningStep.SYNTHESIS,
            description="Synthesize the answer",
            prompt_addition="""
Now I'll synthesize a comprehensive answer:
1. How do all the pieces fit together?
2. What is the most complete and accurate response?
3. Are there any important caveats or limitations?"""
        ))
        
        return steps
    
    def create_reasoning_validation_prompt(
        self,
        query: str,
        proposed_answer: str,
        context: str
    ) -> str:
        """
        Create a prompt for validating chain-of-thought reasoning.
        
        Args:
            query: Original query
            proposed_answer: Generated answer to validate
            context: Context used for the answer
            
        Returns:
            Validation prompt
        """
        return f"""
REASONING VALIDATION TASK:

Original Query: {query}

Proposed Answer: {proposed_answer}

Context Used: {context}

Please validate the reasoning in the proposed answer by checking:

1. LOGICAL CONSISTENCY:
   - Are the reasoning steps logically connected?
   - Are there any contradictions or gaps in logic?
   - Does the conclusion follow from the premises?

2. FACTUAL ACCURACY:
   - Are the facts and technical details correct?
   - Are the citations appropriate and accurate?
   - Is the information consistent with the provided context?

3. COMPLETENESS:
   - Does the answer address all parts of the question?
   - Are important considerations or caveats mentioned?
   - Is the level of detail appropriate for the question?

4. CLARITY:
   - Is the reasoning easy to follow?
   - Are technical terms used correctly?
   - Is the structure logical and well-organized?

Provide your validation assessment with specific feedback on any issues found.
"""
    
    def extract_reasoning_steps(self, cot_response: str) -> List[Dict[str, str]]:
        """
        Extract reasoning steps from a chain-of-thought response.
        
        Args:
            cot_response: Response containing chain-of-thought reasoning
            
        Returns:
            List of extracted reasoning steps
        """
        steps = []
        
        # Look for step patterns
        step_patterns = [
            r"Step \d+:?\s*(.+?)(?=Step \d+|$)",
            r"First,?\s*(.+?)(?=Next,?|Second,?|Then,?|Finally,?|$)",
            r"Next,?\s*(.+?)(?=Then,?|Finally,?|Now,?|$)",
            r"Then,?\s*(.+?)(?=Finally,?|Now,?|$)",
            r"Finally,?\s*(.+?)(?=\n\n|$)"
        ]
        
        for pattern in step_patterns:
            matches = re.findall(pattern, cot_response, re.DOTALL | re.IGNORECASE)
            for match in matches:
                if match.strip():
                    steps.append({
                        "step_text": match.strip(),
                        "pattern": pattern
                    })
        
        return steps
    
    def evaluate_reasoning_quality(self, reasoning_steps: List[Dict[str, str]]) -> Dict[str, float]:
        """
        Evaluate the quality of chain-of-thought reasoning.
        
        Args:
            reasoning_steps: List of reasoning steps
            
        Returns:
            Dictionary of quality metrics
        """
        if not reasoning_steps:
            return {"overall_quality": 0.0, "step_count": 0}
        
        # Evaluate different aspects
        metrics = {
            "step_count": len(reasoning_steps),
            "logical_flow": self._evaluate_logical_flow(reasoning_steps),
            "technical_depth": self._evaluate_technical_depth(reasoning_steps),
            "citation_usage": self._evaluate_citation_usage(reasoning_steps),
            "completeness": self._evaluate_completeness(reasoning_steps)
        }
        
        # Calculate overall quality
        quality_weights = {
            "logical_flow": 0.3,
            "technical_depth": 0.3,
            "citation_usage": 0.2,
            "completeness": 0.2
        }
        
        overall_quality = sum(
            metrics[key] * quality_weights[key]
            for key in quality_weights
        )
        
        metrics["overall_quality"] = overall_quality
        
        return metrics
    
    def _evaluate_logical_flow(self, steps: List[Dict[str, str]]) -> float:
        """Evaluate logical flow between reasoning steps."""
        if len(steps) < 2:
            return 0.5
        
        # Check for logical connectors
        connectors = ["therefore", "thus", "because", "since", "as a result", "consequently"]
        connector_count = 0
        
        for step in steps:
            step_text = step["step_text"].lower()
            if any(connector in step_text for connector in connectors):
                connector_count += 1
        
        return min(connector_count / len(steps), 1.0)
    
    def _evaluate_technical_depth(self, steps: List[Dict[str, str]]) -> float:
        """Evaluate technical depth of reasoning."""
        technical_terms = [
            "implementation", "architecture", "algorithm", "protocol", "specification",
            "optimization", "configuration", "register", "memory", "hardware",
            "software", "system", "component", "module", "interface"
        ]
        
        total_terms = 0
        total_words = 0
        
        for step in steps:
            words = step["step_text"].lower().split()
            total_words += len(words)
            
            for term in technical_terms:
                total_terms += words.count(term)
        
        return min(total_terms / max(total_words, 1) * 100, 1.0)
    
    def _evaluate_citation_usage(self, steps: List[Dict[str, str]]) -> float:
        """Evaluate citation usage in reasoning."""
        citation_pattern = r'\[chunk_\d+\]'
        total_citations = 0
        
        for step in steps:
            citations = re.findall(citation_pattern, step["step_text"])
            total_citations += len(citations)
        
        # Good reasoning should have at least one citation per step
        return min(total_citations / len(steps), 1.0)
    
    def _evaluate_completeness(self, steps: List[Dict[str, str]]) -> float:
        """Evaluate completeness of reasoning."""
        # Check for key reasoning elements
        completeness_indicators = [
            "analysis", "consider", "examine", "evaluate",
            "conclusion", "summary", "result", "therefore",
            "requirement", "constraint", "limitation", "important"
        ]
        
        indicator_count = 0
        for step in steps:
            step_text = step["step_text"].lower()
            for indicator in completeness_indicators:
                if indicator in step_text:
                    indicator_count += 1
                    break
        
        return indicator_count / len(steps)


# Example usage
if __name__ == "__main__":
    # Initialize engine
    cot_engine = ChainOfThoughtEngine()
    
    # Example implementation query
    query = "How do I implement a real-time task scheduler in FreeRTOS with priority inheritance?"
    query_type = QueryType.IMPLEMENTATION
    context = "FreeRTOS supports priority-based scheduling with optional priority inheritance..."
    
    # Create a basic template
    base_template = PromptTemplate(
        system_prompt="You are a technical assistant.",
        context_format="Context: {context}",
        query_format="Question: {query}",
        answer_guidelines="Provide a structured answer."
    )
    
    # Generate chain-of-thought prompt
    cot_prompt = cot_engine.generate_chain_of_thought_prompt(
        query=query,
        query_type=query_type,
        context=context,
        base_template=base_template
    )
    
    print("Chain-of-Thought Enhanced Prompt:")
    print("=" * 50)
    print("System:", cot_prompt["system"][:200], "...")
    print("User:", cot_prompt["user"][:300], "...")
    print("=" * 50)
    
    # Example reasoning evaluation
    example_response = """
    Step 1: Let me analyze the requirements
    FreeRTOS provides priority-based scheduling [chunk_1]...
    
    Step 2: Breaking down the implementation
    Priority inheritance requires mutex implementation [chunk_2]...
    
    Step 3: Synthesizing the solution
    Therefore, we need to configure priority inheritance in FreeRTOS [chunk_3]...
    """
    
    steps = cot_engine.extract_reasoning_steps(example_response)
    quality = cot_engine.evaluate_reasoning_quality(steps)
    
    print(f"Reasoning Quality: {quality}")