Spaces:
Running
Running
File size: 21,708 Bytes
b5246f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
#!/usr/bin/env python3
"""
HuggingFace Inference Providers API-based answer generation.
This module provides answer generation using HuggingFace's new Inference Providers API,
which offers OpenAI-compatible chat completion format for better reliability and consistency.
"""
import os
import sys
import logging
import time
from datetime import datetime
from typing import List, Dict, Any, Optional, Tuple
from pathlib import Path
import re
# Import shared components
from .hf_answer_generator import Citation, GeneratedAnswer
from .prompt_templates import TechnicalPromptTemplates
# Check if huggingface_hub is new enough for InferenceClient chat completion
try:
from huggingface_hub import InferenceClient
from huggingface_hub import __version__ as hf_hub_version
print(f"π Using huggingface_hub version: {hf_hub_version}", file=sys.stderr, flush=True)
except ImportError:
print("β huggingface_hub not found or outdated. Please install: pip install -U huggingface-hub", file=sys.stderr, flush=True)
raise
logger = logging.getLogger(__name__)
class InferenceProvidersGenerator:
"""
Generates answers using HuggingFace Inference Providers API.
This uses the new OpenAI-compatible chat completion format for better reliability
compared to the classic Inference API. It provides:
- Consistent response format across models
- Better error handling and retry logic
- Support for streaming responses
- Automatic provider selection and failover
"""
# Models that work well with chat completion format
CHAT_MODELS = [
"microsoft/DialoGPT-medium", # Proven conversational model
"google/gemma-2-2b-it", # Instruction-tuned, good for Q&A
"meta-llama/Llama-3.2-3B-Instruct", # If available with token
"Qwen/Qwen2.5-1.5B-Instruct", # Small, fast, good quality
]
# Fallback to classic API models if chat completion fails
CLASSIC_FALLBACK_MODELS = [
"google/flan-t5-small", # Good for instructions
"deepset/roberta-base-squad2", # Q&A specific
"facebook/bart-base", # Summarization
]
def __init__(
self,
model_name: Optional[str] = None,
api_token: Optional[str] = None,
temperature: float = 0.3,
max_tokens: int = 512,
timeout: int = 30
):
"""
Initialize the Inference Providers answer generator.
Args:
model_name: Model to use (defaults to first available chat model)
api_token: HF API token (uses env vars if not provided)
temperature: Generation temperature (0.0-1.0)
max_tokens: Maximum tokens to generate
timeout: Request timeout in seconds
"""
# Get API token from various sources
self.api_token = (
api_token or
os.getenv("HUGGINGFACE_API_TOKEN") or
os.getenv("HF_TOKEN") or
os.getenv("HF_API_TOKEN")
)
if not self.api_token:
print("β οΈ No HF API token found. Inference Providers requires authentication.", file=sys.stderr, flush=True)
print("Set HF_TOKEN, HUGGINGFACE_API_TOKEN, or HF_API_TOKEN environment variable.", file=sys.stderr, flush=True)
raise ValueError("HuggingFace API token required for Inference Providers")
print(f"β
Found HF token (starts with: {self.api_token[:8]}...)", file=sys.stderr, flush=True)
# Initialize client with token
self.client = InferenceClient(token=self.api_token)
self.temperature = temperature
self.max_tokens = max_tokens
self.timeout = timeout
# Select model
self.model_name = model_name or self.CHAT_MODELS[0]
self.using_chat_completion = True
print(f"π Initialized Inference Providers with model: {self.model_name}", file=sys.stderr, flush=True)
# Test the connection
self._test_connection()
def _test_connection(self):
"""Test if the API is accessible and model is available."""
print(f"π§ Testing Inference Providers API connection...", file=sys.stderr, flush=True)
try:
# Try a simple test query
test_messages = [
{"role": "user", "content": "Hello"}
]
# First try chat completion (preferred)
try:
response = self.client.chat_completion(
messages=test_messages,
model=self.model_name,
max_tokens=10,
temperature=0.1
)
print(f"β
Chat completion API working with {self.model_name}", file=sys.stderr, flush=True)
self.using_chat_completion = True
return
except Exception as e:
print(f"β οΈ Chat completion failed for {self.model_name}: {e}", file=sys.stderr, flush=True)
# Try other chat models
for model in self.CHAT_MODELS:
if model != self.model_name:
try:
print(f"π Trying {model}...", file=sys.stderr, flush=True)
response = self.client.chat_completion(
messages=test_messages,
model=model,
max_tokens=10
)
print(f"β
Found working model: {model}", file=sys.stderr, flush=True)
self.model_name = model
self.using_chat_completion = True
return
except:
continue
# If chat completion fails, test classic text generation
print("π Falling back to classic text generation API...", file=sys.stderr, flush=True)
for model in self.CLASSIC_FALLBACK_MODELS:
try:
response = self.client.text_generation(
model=model,
prompt="Hello",
max_new_tokens=10
)
print(f"β
Classic API working with fallback model: {model}", file=sys.stderr, flush=True)
self.model_name = model
self.using_chat_completion = False
return
except:
continue
raise Exception("No working models found in Inference Providers API")
except Exception as e:
print(f"β Inference Providers API test failed: {e}", file=sys.stderr, flush=True)
raise
def _format_context(self, chunks: List[Dict[str, Any]]) -> str:
"""Format retrieved chunks into context string."""
context_parts = []
for i, chunk in enumerate(chunks):
chunk_text = chunk.get('content', chunk.get('text', ''))
page_num = chunk.get('metadata', {}).get('page_number', 'unknown')
source = chunk.get('metadata', {}).get('source', 'unknown')
context_parts.append(
f"[chunk_{i+1}] (Page {page_num} from {source}):\n{chunk_text}\n"
)
return "\n---\n".join(context_parts)
def _create_messages(self, query: str, context: str) -> List[Dict[str, str]]:
"""Create chat messages using TechnicalPromptTemplates."""
# Get appropriate template based on query type
prompt_data = TechnicalPromptTemplates.format_prompt_with_template(
query=query,
context=context
)
# Create messages for chat completion
messages = [
{
"role": "system",
"content": prompt_data['system'] + "\n\nMANDATORY: Use [chunk_X] citations for all facts."
},
{
"role": "user",
"content": prompt_data['user']
}
]
return messages
def _call_chat_completion(self, messages: List[Dict[str, str]]) -> str:
"""Call the chat completion API."""
try:
print(f"π€ Calling Inference Providers chat completion with {self.model_name}...", file=sys.stderr, flush=True)
# Use chat completion with proper error handling
response = self.client.chat_completion(
messages=messages,
model=self.model_name,
temperature=self.temperature,
max_tokens=self.max_tokens,
stream=False
)
# Extract content from response
if hasattr(response, 'choices') and response.choices:
content = response.choices[0].message.content
print(f"β
Got response: {len(content)} characters", file=sys.stderr, flush=True)
return content
else:
print(f"β οΈ Unexpected response format: {response}", file=sys.stderr, flush=True)
return str(response)
except Exception as e:
print(f"β Chat completion error: {e}", file=sys.stderr, flush=True)
# Try with a fallback model
if self.model_name != "microsoft/DialoGPT-medium":
print("π Trying fallback model: microsoft/DialoGPT-medium", file=sys.stderr, flush=True)
try:
response = self.client.chat_completion(
messages=messages,
model="microsoft/DialoGPT-medium",
temperature=self.temperature,
max_tokens=self.max_tokens
)
if hasattr(response, 'choices') and response.choices:
return response.choices[0].message.content
except:
pass
raise Exception(f"Chat completion failed: {e}")
def _call_classic_api(self, query: str, context: str) -> str:
"""Fallback to classic text generation API."""
print(f"π Using classic text generation with {self.model_name}...", file=sys.stderr, flush=True)
# Format prompt for classic API
if "squad" in self.model_name.lower():
# Q&A format for squad models
prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
elif "flan" in self.model_name.lower():
# Instruction format for Flan models
prompt = f"Answer the question based on the context.\n\nContext: {context}\n\nQuestion: {query}\n\nAnswer:"
else:
# Generic format
prompt = f"Based on the following context, answer the question.\n\nContext:\n{context}\n\nQuestion: {query}\n\nAnswer:"
try:
response = self.client.text_generation(
model=self.model_name,
prompt=prompt,
max_new_tokens=self.max_tokens,
temperature=self.temperature
)
return response
except Exception as e:
print(f"β Classic API error: {e}", file=sys.stderr, flush=True)
return f"Error generating response: {str(e)}"
def _extract_citations(self, answer: str, chunks: List[Dict[str, Any]]) -> Tuple[str, List[Citation]]:
"""Extract citations from the answer."""
citations = []
citation_pattern = r'\[chunk_(\d+)\]'
cited_chunks = set()
# Find explicit citations
matches = re.finditer(citation_pattern, answer)
for match in matches:
chunk_idx = int(match.group(1)) - 1
if 0 <= chunk_idx < len(chunks):
cited_chunks.add(chunk_idx)
# Fallback: Create citations for top chunks if none found
if not cited_chunks and chunks and len(answer.strip()) > 50:
num_fallback = min(3, len(chunks))
cited_chunks = set(range(num_fallback))
print(f"π§ Creating {num_fallback} fallback citations", file=sys.stderr, flush=True)
# Create Citation objects
chunk_to_source = {}
for idx in cited_chunks:
chunk = chunks[idx]
citation = Citation(
chunk_id=chunk.get('id', f'chunk_{idx}'),
page_number=chunk.get('metadata', {}).get('page_number', 0),
source_file=chunk.get('metadata', {}).get('source', 'unknown'),
relevance_score=chunk.get('score', 0.0),
text_snippet=chunk.get('content', chunk.get('text', ''))[:200] + '...'
)
citations.append(citation)
# Map for natural language replacement
source_name = chunk.get('metadata', {}).get('source', 'unknown')
if source_name != 'unknown':
natural_name = Path(source_name).stem.replace('-', ' ').replace('_', ' ')
chunk_to_source[f'[chunk_{idx+1}]'] = f"the {natural_name} documentation"
else:
chunk_to_source[f'[chunk_{idx+1}]'] = "the documentation"
# Replace citations with natural language
natural_answer = answer
for chunk_ref, natural_ref in chunk_to_source.items():
natural_answer = natural_answer.replace(chunk_ref, natural_ref)
# Clean up any remaining citations
natural_answer = re.sub(r'\[chunk_\d+\]', 'the documentation', natural_answer)
natural_answer = re.sub(r'\s+', ' ', natural_answer).strip()
return natural_answer, citations
def _calculate_confidence(self, answer: str, citations: List[Citation], chunks: List[Dict[str, Any]]) -> float:
"""Calculate confidence score for the answer."""
if not answer or len(answer.strip()) < 10:
return 0.1
# Base confidence from chunk quality
if len(chunks) >= 3:
confidence = 0.8
elif len(chunks) >= 2:
confidence = 0.7
else:
confidence = 0.6
# Citation bonus
if citations and chunks:
citation_ratio = len(citations) / min(len(chunks), 3)
confidence += 0.15 * citation_ratio
# Check for uncertainty phrases
uncertainty_phrases = [
"insufficient information",
"cannot determine",
"not available in the provided documents",
"i don't know",
"unclear"
]
if any(phrase in answer.lower() for phrase in uncertainty_phrases):
confidence *= 0.3
return min(confidence, 0.95)
def generate(self, query: str, chunks: List[Dict[str, Any]]) -> GeneratedAnswer:
"""
Generate an answer using Inference Providers API.
Args:
query: User's question
chunks: Retrieved document chunks
Returns:
GeneratedAnswer with answer, citations, and metadata
"""
start_time = datetime.now()
# Check for no-context situation
if not chunks or all(len(chunk.get('content', chunk.get('text', ''))) < 20 for chunk in chunks):
return GeneratedAnswer(
answer="This information isn't available in the provided documents.",
citations=[],
confidence_score=0.05,
generation_time=0.1,
model_used=self.model_name,
context_used=chunks
)
# Format context
context = self._format_context(chunks)
# Generate answer
try:
if self.using_chat_completion:
# Create chat messages
messages = self._create_messages(query, context)
# Call chat completion API
answer_text = self._call_chat_completion(messages)
else:
# Fallback to classic API
answer_text = self._call_classic_api(query, context)
# Extract citations and clean answer
natural_answer, citations = self._extract_citations(answer_text, chunks)
# Calculate confidence
confidence = self._calculate_confidence(natural_answer, citations, chunks)
generation_time = (datetime.now() - start_time).total_seconds()
return GeneratedAnswer(
answer=natural_answer,
citations=citations,
confidence_score=confidence,
generation_time=generation_time,
model_used=self.model_name,
context_used=chunks
)
except Exception as e:
logger.error(f"Error generating answer: {e}")
print(f"β Generation failed: {e}", file=sys.stderr, flush=True)
# Return error response
return GeneratedAnswer(
answer="I apologize, but I encountered an error while generating the answer. Please try again.",
citations=[],
confidence_score=0.0,
generation_time=(datetime.now() - start_time).total_seconds(),
model_used=self.model_name,
context_used=chunks
)
def generate_with_custom_prompt(
self,
query: str,
chunks: List[Dict[str, Any]],
custom_prompt: Dict[str, str]
) -> GeneratedAnswer:
"""
Generate answer using a custom prompt (for adaptive prompting).
Args:
query: User's question
chunks: Retrieved context chunks
custom_prompt: Dict with 'system' and 'user' prompts
Returns:
GeneratedAnswer with custom prompt enhancement
"""
start_time = datetime.now()
if not chunks:
return GeneratedAnswer(
answer="I don't have enough context to answer your question.",
citations=[],
confidence_score=0.0,
generation_time=0.1,
model_used=self.model_name,
context_used=chunks
)
try:
# Try chat completion with custom prompt
messages = [
{"role": "system", "content": custom_prompt['system']},
{"role": "user", "content": custom_prompt['user']}
]
answer_text = self._call_chat_completion(messages)
# Extract citations and clean answer
natural_answer, citations = self._extract_citations(answer_text, chunks)
# Calculate confidence
confidence = self._calculate_confidence(natural_answer, citations, chunks)
generation_time = (datetime.now() - start_time).total_seconds()
return GeneratedAnswer(
answer=natural_answer,
citations=citations,
confidence_score=confidence,
generation_time=generation_time,
model_used=self.model_name,
context_used=chunks
)
except Exception as e:
logger.error(f"Error generating answer with custom prompt: {e}")
print(f"β Custom prompt generation failed: {e}", file=sys.stderr, flush=True)
# Return error response
return GeneratedAnswer(
answer="I apologize, but I encountered an error while generating the answer. Please try again.",
citations=[],
confidence_score=0.0,
generation_time=(datetime.now() - start_time).total_seconds(),
model_used=self.model_name,
context_used=chunks
)
# Example usage
if __name__ == "__main__":
# Test the generator
print("Testing Inference Providers Generator...")
try:
generator = InferenceProvidersGenerator()
# Test chunks
test_chunks = [
{
"content": "RISC-V is an open-source instruction set architecture (ISA) based on established reduced instruction set computer (RISC) principles.",
"metadata": {"page_number": 1, "source": "riscv-spec.pdf"},
"score": 0.95
},
{
"content": "Unlike most other ISA designs, RISC-V is provided under open source licenses that do not require fees to use.",
"metadata": {"page_number": 2, "source": "riscv-spec.pdf"},
"score": 0.85
}
]
# Generate answer
result = generator.generate("What is RISC-V and why is it important?", test_chunks)
print(f"\nπ Answer: {result.answer}")
print(f"π Confidence: {result.confidence_score:.1%}")
print(f"β±οΈ Generation time: {result.generation_time:.2f}s")
print(f"π€ Model: {result.model_used}")
print(f"π Citations: {len(result.citations)}")
except Exception as e:
print(f"β Test failed: {e}")
import traceback
traceback.print_exc() |