File size: 26,190 Bytes
b5246f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
"""
A/B Testing Framework for Prompt Optimization.

This module provides systematic prompt optimization through A/B testing,
performance analysis, and automated prompt variation generation.
"""

import json
import time
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass, asdict
from enum import Enum
from pathlib import Path
import numpy as np
from collections import defaultdict
import logging

from .prompt_templates import QueryType, PromptTemplate, TechnicalPromptTemplates


class OptimizationMetric(Enum):
    """Metrics for evaluating prompt performance."""
    RESPONSE_TIME = "response_time"
    CONFIDENCE_SCORE = "confidence_score"
    CITATION_COUNT = "citation_count"
    ANSWER_LENGTH = "answer_length"
    TECHNICAL_ACCURACY = "technical_accuracy"
    USER_SATISFACTION = "user_satisfaction"


@dataclass
class PromptVariation:
    """Represents a prompt variation for A/B testing."""
    variation_id: str
    name: str
    description: str
    template: PromptTemplate
    query_type: QueryType
    created_at: float
    metadata: Dict[str, Any]


@dataclass
class TestResult:
    """Represents a single test result."""
    variation_id: str
    query: str
    query_type: QueryType
    response_time: float
    confidence_score: float
    citation_count: int
    answer_length: int
    technical_accuracy: Optional[float] = None
    user_satisfaction: Optional[float] = None
    timestamp: float = None
    metadata: Dict[str, Any] = None
    
    def __post_init__(self):
        if self.timestamp is None:
            self.timestamp = time.time()
        if self.metadata is None:
            self.metadata = {}


@dataclass
class ComparisonResult:
    """Results of A/B test comparison."""
    variation_a: str
    variation_b: str
    metric: OptimizationMetric
    a_mean: float
    b_mean: float
    improvement_percent: float
    p_value: float
    confidence_interval: Tuple[float, float]
    is_significant: bool
    sample_size: int
    recommendation: str


class PromptOptimizer:
    """
    A/B testing framework for systematic prompt optimization.
    
    Features:
    - Automated prompt variation generation
    - Performance metric tracking
    - Statistical significance testing
    - Recommendation engine
    - Persistence and experiment tracking
    """
    
    def __init__(self, experiment_dir: str = "experiments"):
        """
        Initialize the prompt optimizer.
        
        Args:
            experiment_dir: Directory to store experiment data
        """
        self.experiment_dir = Path(experiment_dir)
        self.experiment_dir.mkdir(exist_ok=True)
        
        self.variations: Dict[str, PromptVariation] = {}
        self.test_results: List[TestResult] = []
        self.active_experiments: Dict[str, List[str]] = {}
        
        # Load existing experiments
        self._load_experiments()
        
        # Setup logging
        logging.basicConfig(level=logging.INFO)
        self.logger = logging.getLogger(__name__)
    
    def create_variation(
        self,
        base_template: PromptTemplate,
        query_type: QueryType,
        variation_name: str,
        modifications: Dict[str, str],
        description: str = ""
    ) -> str:
        """
        Create a new prompt variation.
        
        Args:
            base_template: Base template to modify
            query_type: Type of query this variation is for
            variation_name: Human-readable name
            modifications: Dict of template field modifications
            description: Description of the variation
            
        Returns:
            Variation ID
        """
        variation_id = f"{query_type.value}_{variation_name}_{int(time.time())}"
        
        # Create modified template
        modified_template = PromptTemplate(
            system_prompt=modifications.get("system_prompt", base_template.system_prompt),
            context_format=modifications.get("context_format", base_template.context_format),
            query_format=modifications.get("query_format", base_template.query_format),
            answer_guidelines=modifications.get("answer_guidelines", base_template.answer_guidelines)
        )
        
        variation = PromptVariation(
            variation_id=variation_id,
            name=variation_name,
            description=description,
            template=modified_template,
            query_type=query_type,
            created_at=time.time(),
            metadata=modifications
        )
        
        self.variations[variation_id] = variation
        self._save_variation(variation)
        
        self.logger.info(f"Created variation: {variation_id}")
        return variation_id
    
    def create_temperature_variations(
        self,
        base_query_type: QueryType,
        temperatures: List[float] = [0.3, 0.5, 0.7, 0.9]
    ) -> List[str]:
        """
        Create variations with different temperature settings.
        
        Args:
            base_query_type: Query type to create variations for
            temperatures: List of temperature values to test
            
        Returns:
            List of variation IDs
        """
        base_template = TechnicalPromptTemplates.get_template_for_query("")
        if base_query_type != QueryType.GENERAL:
            template_map = {
                QueryType.DEFINITION: TechnicalPromptTemplates.get_definition_template,
                QueryType.IMPLEMENTATION: TechnicalPromptTemplates.get_implementation_template,
                QueryType.COMPARISON: TechnicalPromptTemplates.get_comparison_template,
                QueryType.SPECIFICATION: TechnicalPromptTemplates.get_specification_template,
                QueryType.CODE_EXAMPLE: TechnicalPromptTemplates.get_code_example_template,
                QueryType.HARDWARE_CONSTRAINT: TechnicalPromptTemplates.get_hardware_constraint_template,
                QueryType.TROUBLESHOOTING: TechnicalPromptTemplates.get_troubleshooting_template,
            }
            base_template = template_map[base_query_type]()
        
        variation_ids = []
        for temp in temperatures:
            temp_modification = {
                "system_prompt": base_template.system_prompt + f"\n\nGenerate responses with temperature={temp} (creativity level).",
                "answer_guidelines": base_template.answer_guidelines + f"\n\nAdjust response creativity to temperature={temp}."
            }
            
            variation_id = self.create_variation(
                base_template=base_template,
                query_type=base_query_type,
                variation_name=f"temp_{temp}",
                modifications=temp_modification,
                description=f"Temperature variation with {temp} creativity level"
            )
            variation_ids.append(variation_id)
        
        return variation_ids
    
    def create_length_variations(
        self,
        base_query_type: QueryType,
        length_styles: List[str] = ["concise", "detailed", "comprehensive"]
    ) -> List[str]:
        """
        Create variations with different response length preferences.
        
        Args:
            base_query_type: Query type to create variations for
            length_styles: List of length styles to test
            
        Returns:
            List of variation IDs
        """
        base_template = TechnicalPromptTemplates.get_template_for_query("")
        if base_query_type != QueryType.GENERAL:
            template_map = {
                QueryType.DEFINITION: TechnicalPromptTemplates.get_definition_template,
                QueryType.IMPLEMENTATION: TechnicalPromptTemplates.get_implementation_template,
                QueryType.COMPARISON: TechnicalPromptTemplates.get_comparison_template,
                QueryType.SPECIFICATION: TechnicalPromptTemplates.get_specification_template,
                QueryType.CODE_EXAMPLE: TechnicalPromptTemplates.get_code_example_template,
                QueryType.HARDWARE_CONSTRAINT: TechnicalPromptTemplates.get_hardware_constraint_template,
                QueryType.TROUBLESHOOTING: TechnicalPromptTemplates.get_troubleshooting_template,
            }
            base_template = template_map[base_query_type]()
        
        length_prompts = {
            "concise": "Be concise and focus on essential information only. Aim for 2-3 sentences per point.",
            "detailed": "Provide detailed explanations with examples. Aim for comprehensive coverage.",
            "comprehensive": "Provide exhaustive detail with multiple examples, edge cases, and related concepts."
        }
        
        variation_ids = []
        for style in length_styles:
            length_modification = {
                "answer_guidelines": base_template.answer_guidelines + f"\n\nResponse style: {length_prompts[style]}"
            }
            
            variation_id = self.create_variation(
                base_template=base_template,
                query_type=base_query_type,
                variation_name=f"length_{style}",
                modifications=length_modification,
                description=f"Length variation with {style} response style"
            )
            variation_ids.append(variation_id)
        
        return variation_ids
    
    def create_citation_variations(
        self,
        base_query_type: QueryType,
        citation_styles: List[str] = ["minimal", "standard", "extensive"]
    ) -> List[str]:
        """
        Create variations with different citation requirements.
        
        Args:
            base_query_type: Query type to create variations for
            citation_styles: List of citation styles to test
            
        Returns:
            List of variation IDs
        """
        base_template = TechnicalPromptTemplates.get_template_for_query("")
        if base_query_type != QueryType.GENERAL:
            template_map = {
                QueryType.DEFINITION: TechnicalPromptTemplates.get_definition_template,
                QueryType.IMPLEMENTATION: TechnicalPromptTemplates.get_implementation_template,
                QueryType.COMPARISON: TechnicalPromptTemplates.get_comparison_template,
                QueryType.SPECIFICATION: TechnicalPromptTemplates.get_specification_template,
                QueryType.CODE_EXAMPLE: TechnicalPromptTemplates.get_code_example_template,
                QueryType.HARDWARE_CONSTRAINT: TechnicalPromptTemplates.get_hardware_constraint_template,
                QueryType.TROUBLESHOOTING: TechnicalPromptTemplates.get_troubleshooting_template,
            }
            base_template = template_map[base_query_type]()
        
        citation_prompts = {
            "minimal": "Use [chunk_X] citations only for direct quotes or specific claims.",
            "standard": "Include [chunk_X] citations for each major point or claim.",
            "extensive": "Provide [chunk_X] citations for every statement. Use multiple citations per point where relevant."
        }
        
        variation_ids = []
        for style in citation_styles:
            citation_modification = {
                "answer_guidelines": base_template.answer_guidelines + f"\n\nCitation style: {citation_prompts[style]}"
            }
            
            variation_id = self.create_variation(
                base_template=base_template,
                query_type=base_query_type,
                variation_name=f"citation_{style}",
                modifications=citation_modification,
                description=f"Citation variation with {style} citation requirements"
            )
            variation_ids.append(variation_id)
        
        return variation_ids
    
    def setup_experiment(
        self,
        experiment_name: str,
        variation_ids: List[str],
        test_queries: List[str]
    ) -> str:
        """
        Set up a new A/B test experiment.
        
        Args:
            experiment_name: Name of the experiment
            variation_ids: List of variation IDs to test
            test_queries: List of test queries
            
        Returns:
            Experiment ID
        """
        experiment_id = f"exp_{experiment_name}_{int(time.time())}"
        
        experiment_config = {
            "experiment_id": experiment_id,
            "name": experiment_name,
            "variation_ids": variation_ids,
            "test_queries": test_queries,
            "created_at": time.time(),
            "status": "active"
        }
        
        self.active_experiments[experiment_id] = variation_ids
        
        # Save experiment config
        experiment_file = self.experiment_dir / f"{experiment_id}.json"
        with open(experiment_file, 'w') as f:
            json.dump(experiment_config, f, indent=2)
        
        self.logger.info(f"Created experiment: {experiment_id}")
        return experiment_id
    
    def record_test_result(
        self,
        variation_id: str,
        query: str,
        query_type: QueryType,
        response_time: float,
        confidence_score: float,
        citation_count: int,
        answer_length: int,
        technical_accuracy: Optional[float] = None,
        user_satisfaction: Optional[float] = None,
        metadata: Optional[Dict[str, Any]] = None
    ) -> None:
        """
        Record a test result for analysis.
        
        Args:
            variation_id: ID of the variation tested
            query: The query that was tested
            query_type: Type of the query
            response_time: Response time in seconds
            confidence_score: Confidence score (0-1)
            citation_count: Number of citations in response
            answer_length: Length of answer in characters
            technical_accuracy: Optional technical accuracy score (0-1)
            user_satisfaction: Optional user satisfaction score (0-1)
            metadata: Optional additional metadata
        """
        result = TestResult(
            variation_id=variation_id,
            query=query,
            query_type=query_type,
            response_time=response_time,
            confidence_score=confidence_score,
            citation_count=citation_count,
            answer_length=answer_length,
            technical_accuracy=technical_accuracy,
            user_satisfaction=user_satisfaction,
            metadata=metadata or {}
        )
        
        self.test_results.append(result)
        self._save_test_result(result)
        
        self.logger.info(f"Recorded test result for variation: {variation_id}")
    
    def analyze_variations(
        self,
        variation_a: str,
        variation_b: str,
        metric: OptimizationMetric,
        min_samples: int = 10
    ) -> ComparisonResult:
        """
        Analyze performance difference between two variations.
        
        Args:
            variation_a: First variation ID
            variation_b: Second variation ID
            metric: Metric to compare
            min_samples: Minimum samples required for analysis
            
        Returns:
            Comparison result with statistical analysis
        """
        # Filter results for each variation
        results_a = [r for r in self.test_results if r.variation_id == variation_a]
        results_b = [r for r in self.test_results if r.variation_id == variation_b]
        
        if len(results_a) < min_samples or len(results_b) < min_samples:
            raise ValueError(f"Insufficient samples. Need at least {min_samples} for each variation.")
        
        # Extract metric values
        values_a = self._extract_metric_values(results_a, metric)
        values_b = self._extract_metric_values(results_b, metric)
        
        # Calculate statistics
        mean_a = np.mean(values_a)
        mean_b = np.mean(values_b)
        
        # Calculate improvement percentage
        improvement = ((mean_b - mean_a) / mean_a) * 100
        
        # Simple t-test (normally would use scipy.stats.ttest_ind)
        # For now, using basic statistical comparison
        std_a = np.std(values_a)
        std_b = np.std(values_b)
        n_a = len(values_a)
        n_b = len(values_b)
        
        # Basic p-value estimation (simplified)
        pooled_std = np.sqrt(((n_a - 1) * std_a**2 + (n_b - 1) * std_b**2) / (n_a + n_b - 2))
        t_stat = (mean_b - mean_a) / (pooled_std * np.sqrt(1/n_a + 1/n_b))
        p_value = 2 * (1 - abs(t_stat) / (abs(t_stat) + 1))  # Rough approximation
        
        # Confidence interval (simplified)
        margin_of_error = 1.96 * pooled_std * np.sqrt(1/n_a + 1/n_b)
        ci_lower = (mean_b - mean_a) - margin_of_error
        ci_upper = (mean_b - mean_a) + margin_of_error
        
        # Determine significance
        is_significant = p_value < 0.05
        
        # Generate recommendation
        if is_significant:
            if improvement > 0:
                recommendation = f"Variation B shows significant improvement ({improvement:.1f}%). Recommend adopting variation B."
            else:
                recommendation = f"Variation A shows significant improvement ({-improvement:.1f}%). Recommend keeping variation A."
        else:
            recommendation = f"No significant difference detected (p={p_value:.3f}). More data needed or variations are equivalent."
        
        return ComparisonResult(
            variation_a=variation_a,
            variation_b=variation_b,
            metric=metric,
            a_mean=mean_a,
            b_mean=mean_b,
            improvement_percent=improvement,
            p_value=p_value,
            confidence_interval=(ci_lower, ci_upper),
            is_significant=is_significant,
            sample_size=min(n_a, n_b),
            recommendation=recommendation
        )
    
    def get_best_variation(
        self,
        query_type: QueryType,
        metric: OptimizationMetric,
        min_samples: int = 10
    ) -> Optional[str]:
        """
        Get the best performing variation for a query type and metric.
        
        Args:
            query_type: Type of query
            metric: Metric to optimize for
            min_samples: Minimum samples required
            
        Returns:
            Best variation ID or None if insufficient data
        """
        # Filter results by query type
        relevant_results = [r for r in self.test_results if r.query_type == query_type]
        
        # Group by variation
        variation_performance = defaultdict(list)
        for result in relevant_results:
            variation_performance[result.variation_id].append(result)
        
        # Calculate mean performance for each variation
        best_variation = None
        best_score = None
        
        for variation_id, results in variation_performance.items():
            if len(results) >= min_samples:
                values = self._extract_metric_values(results, metric)
                mean_score = np.mean(values)
                
                if best_score is None or mean_score > best_score:
                    best_score = mean_score
                    best_variation = variation_id
        
        return best_variation
    
    def generate_optimization_report(
        self,
        experiment_id: str,
        output_file: Optional[str] = None
    ) -> Dict[str, Any]:
        """
        Generate a comprehensive optimization report.
        
        Args:
            experiment_id: Experiment to analyze
            output_file: Optional file to save report
            
        Returns:
            Report dictionary
        """
        if experiment_id not in self.active_experiments:
            raise ValueError(f"Experiment {experiment_id} not found")
        
        variation_ids = self.active_experiments[experiment_id]
        experiment_results = [r for r in self.test_results if r.variation_id in variation_ids]
        
        if not experiment_results:
            raise ValueError(f"No results found for experiment {experiment_id}")
        
        # Analyze each metric
        metrics = [
            OptimizationMetric.RESPONSE_TIME,
            OptimizationMetric.CONFIDENCE_SCORE,
            OptimizationMetric.CITATION_COUNT,
            OptimizationMetric.ANSWER_LENGTH
        ]
        
        report = {
            "experiment_id": experiment_id,
            "variations_tested": len(variation_ids),
            "total_tests": len(experiment_results),
            "analysis_date": time.time(),
            "metric_analysis": {},
            "recommendations": []
        }
        
        # Analyze each metric across variations
        for metric in metrics:
            metric_data = {}
            for variation_id in variation_ids:
                var_results = [r for r in experiment_results if r.variation_id == variation_id]
                if var_results:
                    values = self._extract_metric_values(var_results, metric)
                    metric_data[variation_id] = {
                        "mean": np.mean(values),
                        "std": np.std(values),
                        "count": len(values)
                    }
            
            report["metric_analysis"][metric.value] = metric_data
        
        # Generate recommendations
        for metric in metrics:
            best_variation = self.get_best_variation(
                query_type=QueryType.GENERAL,  # Could be made more specific
                metric=metric,
                min_samples=5
            )
            if best_variation:
                report["recommendations"].append({
                    "metric": metric.value,
                    "best_variation": best_variation,
                    "variation_name": self.variations[best_variation].name
                })
        
        # Save report if requested
        if output_file:
            with open(output_file, 'w') as f:
                json.dump(report, f, indent=2)
        
        return report
    
    def _extract_metric_values(self, results: List[TestResult], metric: OptimizationMetric) -> List[float]:
        """Extract metric values from test results."""
        values = []
        for result in results:
            if metric == OptimizationMetric.RESPONSE_TIME:
                values.append(result.response_time)
            elif metric == OptimizationMetric.CONFIDENCE_SCORE:
                values.append(result.confidence_score)
            elif metric == OptimizationMetric.CITATION_COUNT:
                values.append(float(result.citation_count))
            elif metric == OptimizationMetric.ANSWER_LENGTH:
                values.append(float(result.answer_length))
            elif metric == OptimizationMetric.TECHNICAL_ACCURACY and result.technical_accuracy is not None:
                values.append(result.technical_accuracy)
            elif metric == OptimizationMetric.USER_SATISFACTION and result.user_satisfaction is not None:
                values.append(result.user_satisfaction)
        
        return values
    
    def _load_experiments(self) -> None:
        """Load existing experiments from disk."""
        if not self.experiment_dir.exists():
            return
        
        for file_path in self.experiment_dir.glob("*.json"):
            if file_path.name.startswith("exp_"):
                with open(file_path, 'r') as f:
                    config = json.load(f)
                    self.active_experiments[config["experiment_id"]] = config["variation_ids"]
        
        # Load variations and results
        for file_path in self.experiment_dir.glob("variation_*.json"):
            with open(file_path, 'r') as f:
                var_data = json.load(f)
                variation = PromptVariation(**var_data)
                self.variations[variation.variation_id] = variation
        
        for file_path in self.experiment_dir.glob("result_*.json"):
            with open(file_path, 'r') as f:
                result_data = json.load(f)
                result = TestResult(**result_data)
                self.test_results.append(result)
    
    def _save_variation(self, variation: PromptVariation) -> None:
        """Save variation to disk."""
        file_path = self.experiment_dir / f"variation_{variation.variation_id}.json"
        var_dict = asdict(variation)
        
        # Convert template to dict
        var_dict["template"] = asdict(variation.template)
        var_dict["query_type"] = variation.query_type.value
        
        with open(file_path, 'w') as f:
            json.dump(var_dict, f, indent=2)
    
    def _save_test_result(self, result: TestResult) -> None:
        """Save test result to disk."""
        file_path = self.experiment_dir / f"result_{int(result.timestamp)}.json"
        result_dict = asdict(result)
        result_dict["query_type"] = result.query_type.value
        
        with open(file_path, 'w') as f:
            json.dump(result_dict, f, indent=2)


# Example usage
if __name__ == "__main__":
    # Initialize optimizer
    optimizer = PromptOptimizer()
    
    # Create temperature variations for implementation queries
    temp_variations = optimizer.create_temperature_variations(
        base_query_type=QueryType.IMPLEMENTATION,
        temperatures=[0.3, 0.7]
    )
    
    # Create length variations for definition queries
    length_variations = optimizer.create_length_variations(
        base_query_type=QueryType.DEFINITION,
        length_styles=["concise", "detailed"]
    )
    
    # Setup experiment
    test_queries = [
        "How do I implement a timer interrupt in RISC-V?",
        "What is the difference between machine mode and user mode?",
        "Configure GPIO pins for input/output operations"
    ]
    
    experiment_id = optimizer.setup_experiment(
        experiment_name="temperature_vs_length",
        variation_ids=temp_variations + length_variations,
        test_queries=test_queries
    )
    
    print(f"Created experiment: {experiment_id}")
    print(f"Variations: {len(temp_variations + length_variations)}")
    print(f"Test queries: {len(test_queries)}")