File size: 24,243 Bytes
5e1a30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
"""
Modular Embedder Implementation.

This module implements the primary Embedder interface that coordinates
all embedding sub-components (model, batch processor, cache) through
a configurable architecture following the ModularDocumentProcessor pattern.

Architecture Notes:
- Implements Embedder interface from core.interfaces
- Coordinates sub-components via configuration-driven selection
- Follows adapter vs direct implementation patterns per specification
- Provides unified interface for embedding generation
- Includes comprehensive error handling and metrics
"""

import time
from pathlib import Path
from typing import List, Dict, Any, Optional
import numpy as np
import logging
import sys

# Add project paths for imports
project_root = Path(__file__).parent.parent.parent.parent
sys.path.append(str(project_root))

from src.core.interfaces import Embedder as EmbedderInterface, HealthStatus

# Forward declaration to avoid circular import
from typing import TYPE_CHECKING
if TYPE_CHECKING:
    from src.core.platform_orchestrator import PlatformOrchestrator
from .base import (
    EmbeddingModel, 
    BatchProcessor, 
    EmbeddingCache, 
    ConfigurableEmbedderComponent,
    ComponentValidationResult
)

# Import sub-component implementations
from .models.sentence_transformer_model import SentenceTransformerModel
from .batch_processors.dynamic_batch_processor import DynamicBatchProcessor
from .caches.memory_cache import MemoryCache

logger = logging.getLogger(__name__)


class ModularEmbedder(EmbedderInterface, ConfigurableEmbedderComponent):
    """
    Modular embedder with configurable sub-components.
    
    This embedder implements the Embedder interface while providing
    a modular architecture where embedding model, batch processing, and
    caching strategies can be configured independently.
    
    Features:
    - Configuration-driven sub-component selection
    - Multiple embedding provider support (extensible)
    - Comprehensive error handling and validation
    - Performance metrics and monitoring
    - Pluggable sub-component architecture
    
    Configuration Structure:
    {
        "model": {
            "type": "sentence_transformer",  # or "openai", "cohere"
            "config": {
                "model_name": "all-MiniLM-L6-v2",
                "device": "mps",
                "normalize_embeddings": true
            }
        },
        "batch_processor": {
            "type": "dynamic",
            "config": {
                "initial_batch_size": 32,
                "max_batch_size": 128,
                "optimize_for_memory": true
            }
        },
        "cache": {
            "type": "memory",  # or "redis", "disk"
            "config": {
                "max_entries": 100000,
                "max_memory_mb": 1024
            }
        }
    }
    
    Architecture Compliance:
    - EmbeddingModel: Mixed (Direct for local, Adapter for APIs)
    - BatchProcessor: Direct implementation (pure algorithms)
    - EmbeddingCache: Mixed (Direct for memory, Adapter for external stores)
    """
    
    # Sub-component type mappings
    _MODEL_TYPES = {
        "sentence_transformer": SentenceTransformerModel,
        # Future: "openai": OpenAIEmbeddingAdapter,
        # Future: "cohere": CohereEmbeddingAdapter,
    }
    
    _BATCH_PROCESSOR_TYPES = {
        "dynamic": DynamicBatchProcessor,
        # Future: "fixed": FixedBatchProcessor,
        # Future: "streaming": StreamingBatchProcessor,
    }
    
    _CACHE_TYPES = {
        "memory": MemoryCache,
        # Future: "redis": RedisCacheAdapter,
        # Future: "disk": DiskCacheAdapter,
    }
    
    def __init__(self, config: Dict[str, Any] = None, **kwargs):
        """
        Initialize modular embedder with sub-components.
        
        Args:
            config: Embedder configuration dictionary
            **kwargs: Alternative configuration parameters (for backward compatibility)
        """
        # Handle configuration - prioritize explicit config, fallback to kwargs
        if config is None:
            config = kwargs
        
        super().__init__(config)
        
        # Initialize sub-components in dependency order
        self.model = self._create_model()
        self.cache = self._create_cache()  
        self.batch_processor = self._create_batch_processor()  # Needs model reference
        
        # Performance tracking
        self._total_embeddings_generated = 0
        self._total_processing_time = 0.0
        self._cache_hits = 0
        self._cache_misses = 0
        self._created_time = time.time()
        
        # Platform services (initialized via initialize_services)
        self.platform: Optional['PlatformOrchestrator'] = None
        
        # Validate complete system
        validation_result = self.validate_components()
        if not validation_result.is_valid:
            raise RuntimeError(f"Component validation failed: {validation_result.message}")
        
        logger.info(f"ModularEmbedder initialized successfully with sub-components: "
                   f"model={self.model.__class__.__name__}, "
                   f"batch_processor={self.batch_processor.__class__.__name__}, "
                   f"cache={self.cache.__class__.__name__}")
    
    def _validate_config(self) -> None:
        """
        Validate embedder configuration.
        
        Raises:
            ValueError: If configuration is invalid
        """
        required_sections = ["model", "batch_processor", "cache"]
        for section in required_sections:
            if section not in self.config:
                raise ValueError(f"Missing required configuration section: {section}")
        
        # Validate each sub-component config
        for section in required_sections:
            section_config = self.config[section]
            if "type" not in section_config:
                raise ValueError(f"Missing 'type' in {section} configuration")
            if "config" not in section_config:
                raise ValueError(f"Missing 'config' in {section} configuration")
    
    def _create_model(self) -> EmbeddingModel:
        """
        Create embedding model sub-component.
        
        Returns:
            Configured EmbeddingModel instance
            
        Raises:
            ValueError: If model type is not supported
        """
        model_config = self.config["model"]
        model_type = model_config["type"]
        
        if model_type not in self._MODEL_TYPES:
            available_types = list(self._MODEL_TYPES.keys())
            raise ValueError(f"Unsupported model type '{model_type}'. Available: {available_types}")
        
        model_class = self._MODEL_TYPES[model_type]
        model_instance = model_class(model_config["config"])
        
        logger.debug(f"Created embedding model: {model_type} -> {model_class.__name__}")
        return model_instance
    
    def _create_batch_processor(self) -> BatchProcessor:
        """
        Create batch processor sub-component.
        
        Returns:
            Configured BatchProcessor instance
            
        Raises:
            ValueError: If batch processor type is not supported
        """
        batch_config = self.config["batch_processor"]
        batch_type = batch_config["type"]
        
        if batch_type not in self._BATCH_PROCESSOR_TYPES:
            available_types = list(self._BATCH_PROCESSOR_TYPES.keys())
            raise ValueError(f"Unsupported batch processor type '{batch_type}'. Available: {available_types}")
        
        batch_class = self._BATCH_PROCESSOR_TYPES[batch_type]
        
        # BatchProcessor needs reference to the embedding model
        batch_instance = batch_class(batch_config["config"], self.model)
        
        logger.debug(f"Created batch processor: {batch_type} -> {batch_class.__name__}")
        return batch_instance
    
    def _create_cache(self) -> EmbeddingCache:
        """
        Create embedding cache sub-component.
        
        Returns:
            Configured EmbeddingCache instance
            
        Raises:
            ValueError: If cache type is not supported
        """
        cache_config = self.config["cache"]
        cache_type = cache_config["type"]
        
        if cache_type not in self._CACHE_TYPES:
            available_types = list(self._CACHE_TYPES.keys())
            raise ValueError(f"Unsupported cache type '{cache_type}'. Available: {available_types}")
        
        cache_class = self._CACHE_TYPES[cache_type]
        cache_instance = cache_class(cache_config["config"])
        
        logger.debug(f"Created embedding cache: {cache_type} -> {cache_class.__name__}")
        return cache_instance
    
    def embed(self, texts: List[str]) -> List[List[float]]:
        """
        Generate embeddings for a list of texts using the modular architecture.
        
        This method coordinates all sub-components:
        1. Check cache for existing embeddings
        2. Use batch processor for optimal throughput on cache misses
        3. Store new embeddings in cache
        4. Return combined results
        
        Args:
            texts: List of text strings to embed
            
        Returns:
            List of embedding vectors, where each vector is a list of floats
            
        Raises:
            ValueError: If texts list is empty
            RuntimeError: If embedding generation fails
        """
        if not texts:
            raise ValueError("Cannot generate embeddings for empty text list")
        
        start_time = time.time()
        
        try:
            # Step 1: Check cache for existing embeddings
            cached_embeddings = {}
            texts_to_compute = []
            
            for i, text in enumerate(texts):
                cached_embedding = self.cache.get(text)
                if cached_embedding is not None:
                    cached_embeddings[i] = cached_embedding
                    self._cache_hits += 1
                else:
                    texts_to_compute.append((i, text))
                    self._cache_misses += 1
            
            # Step 2: Generate embeddings for cache misses using batch processor
            new_embeddings = {}
            if texts_to_compute:
                texts_for_processing = [text for _, text in texts_to_compute]
                
                # Use batch processor for optimal throughput
                processed_embeddings = self.batch_processor.process_batch(
                    texts_for_processing, 
                    batch_size=32  # Will be optimized by batch processor
                )
                
                # Step 3: Store new embeddings in cache and collect results
                for j, (original_index, text) in enumerate(texts_to_compute):
                    embedding = processed_embeddings[j]
                    
                    # Store in cache
                    self.cache.put(text, embedding)
                    
                    # Store for result assembly
                    new_embeddings[original_index] = embedding
            
            # Step 4: Assemble final results in original order
            result_embeddings = []
            for i in range(len(texts)):
                if i in cached_embeddings:
                    embedding = cached_embeddings[i]
                else:
                    embedding = new_embeddings[i]
                
                # Convert to list format as required by interface
                result_embeddings.append(embedding.tolist())
            
            # Update performance statistics
            processing_time = time.time() - start_time
            self._total_embeddings_generated += len(texts)
            self._total_processing_time += processing_time
            
            # Track performance using platform services
            if self.platform:
                self.platform.track_component_performance(
                    self, 
                    "embedding_generation", 
                    {
                        "success": True,
                        "processing_time": processing_time,
                        "texts_count": len(texts),
                        "cache_hits": len(cached_embeddings),
                        "new_embeddings": len(new_embeddings),
                        "embedding_dimension": self.embedding_dim()
                    }
                )
            
            logger.debug(f"Generated {len(texts)} embeddings in {processing_time:.3f}s "
                        f"(cache hits: {len(cached_embeddings)}, computed: {len(new_embeddings)})")
            
            return result_embeddings
            
        except Exception as e:
            # Track failure using platform services
            if self.platform:
                processing_time = time.time() - start_time
                self.platform.track_component_performance(
                    self, 
                    "embedding_generation", 
                    {
                        "success": False,
                        "processing_time": processing_time,
                        "texts_count": len(texts),
                        "error": str(e)
                    }
                )
            
            logger.error(f"Embedding generation failed: {e}")
            raise RuntimeError(f"Failed to generate embeddings: {str(e)}") from e
    
    def embedding_dim(self) -> int:
        """
        Get the embedding dimension.
        
        Returns:
            Integer dimension of embeddings
        """
        return self.model.get_embedding_dim()
    
    def get_model_info(self) -> Dict[str, Any]:
        """
        Get comprehensive information about the embedder and its sub-components.
        
        Returns:
            Dictionary with embedder configuration and status
        """
        return {
            "component_type": "modular_embedder",
            "embedding_dimension": self.embedding_dim(),
            "model": {
                "type": self.config["model"]["type"],
                "info": self.model.get_model_info() if hasattr(self.model, 'get_model_info') else {}
            },
            "batch_processor": {
                "type": self.config["batch_processor"]["type"],
                "stats": self.batch_processor.get_batch_stats()
            },
            "cache": {
                "type": self.config["cache"]["type"],
                "stats": self.cache.get_cache_stats()
            },
            "performance": self.get_performance_stats(),
            "uptime_seconds": time.time() - self._created_time
        }
    
    def get_performance_stats(self) -> Dict[str, Any]:
        """
        Get performance statistics for the embedder.
        
        Returns:
            Dictionary with performance metrics
        """
        total_requests = self._cache_hits + self._cache_misses
        cache_hit_rate = self._cache_hits / total_requests if total_requests > 0 else 0.0
        
        avg_throughput = (
            self._total_embeddings_generated / self._total_processing_time 
            if self._total_processing_time > 0 else 0.0
        )
        
        return {
            "total_embeddings_generated": self._total_embeddings_generated,
            "total_processing_time": self._total_processing_time,
            "average_throughput": avg_throughput,
            "cache_hits": self._cache_hits,
            "cache_misses": self._cache_misses,
            "cache_hit_rate": cache_hit_rate,
            "uptime_seconds": time.time() - self._created_time
        }
    
    def supports_batching(self) -> bool:
        """
        Check if this embedder supports batch processing.
        
        Returns:
            True, as this implementation supports efficient batch processing
        """
        return True
    
    def validate_components(self) -> ComponentValidationResult:
        """
        Validate all sub-components are properly configured and functional.
        
        Returns:
            ComponentValidationResult with validation status
        """
        try:
            # Test model
            if not self.model.is_available():
                return ComponentValidationResult(
                    False, 
                    "Embedding model is not available",
                    {"model_type": self.config["model"]["type"]}
                )
            
            # Test model with dummy data
            try:
                test_embedding = self.model.encode(["test"])
                if test_embedding.size == 0:
                    return ComponentValidationResult(
                        False,
                        "Model produced empty embedding",
                        {"model_type": self.config["model"]["type"]}
                    )
            except Exception as e:
                return ComponentValidationResult(
                    False,
                    f"Model encoding test failed: {e}",
                    {"model_type": self.config["model"]["type"]}
                )
            
            # Test cache
            try:
                # Test cache operations
                test_embedding = np.array([1.0, 2.0, 3.0])
                self.cache.put("test_key", test_embedding)
                retrieved = self.cache.get("test_key")
                if retrieved is None or not np.array_equal(retrieved, test_embedding):
                    return ComponentValidationResult(
                        False,
                        "Cache put/get operations failed",
                        {"cache_type": self.config["cache"]["type"]}
                    )
                # Clean up test data
                self.cache.invalidate("test_key")
            except Exception as e:
                return ComponentValidationResult(
                    False,
                    f"Cache operations test failed: {e}",
                    {"cache_type": self.config["cache"]["type"]}
                )
            
            # Test batch processor
            if not hasattr(self.batch_processor, 'process_batch'):
                return ComponentValidationResult(
                    False,
                    "Batch processor missing required methods",
                    {"batch_processor_type": self.config["batch_processor"]["type"]}
                )
            
            return ComponentValidationResult(
                True,
                "All components validated successfully",
                {
                    "model_type": self.config["model"]["type"],
                    "batch_processor_type": self.config["batch_processor"]["type"],
                    "cache_type": self.config["cache"]["type"],
                    "embedding_dimension": self.embedding_dim()
                }
            )
            
        except Exception as e:
            return ComponentValidationResult(
                False,
                f"Component validation failed with error: {e}",
                {"error_type": type(e).__name__}
            )
    
    def get_sub_components(self) -> Dict[str, Any]:
        """
        Get information about all sub-components for factory logging.
        
        Returns:
            Dictionary with sub-component details
        """
        return {
            "components": {
                "model": {
                    "type": self.config["model"]["type"],
                    "class": self.model.__class__.__name__,
                    "available": self.model.is_available()
                },
                "batch_processor": {
                    "type": self.config["batch_processor"]["type"],
                    "class": self.batch_processor.__class__.__name__,
                    "supports_streaming": self.batch_processor.supports_streaming()
                },
                "cache": {
                    "type": self.config["cache"]["type"],
                    "class": self.cache.__class__.__name__,
                    "size": self.cache.get_cache_size()
                }
            },
            "architecture": "modular_embedder",
            "total_sub_components": 3
        }
    
    # Standard ComponentBase interface implementation
    def initialize_services(self, platform: 'PlatformOrchestrator') -> None:
        """Initialize platform services for the component.
        
        Args:
            platform: PlatformOrchestrator instance providing services
        """
        self.platform = platform
        logger.info("ModularEmbedder initialized with platform services")

    def get_health_status(self) -> HealthStatus:
        """Get the current health status of the component.
        
        Returns:
            HealthStatus object with component health information
        """
        if self.platform:
            return self.platform.check_component_health(self)
        
        # Fallback if platform services not initialized
        validation_result = self.validate_components()
        
        return HealthStatus(
            is_healthy=validation_result.is_valid,
            status="healthy" if validation_result.is_valid else "unhealthy",
            details={
                "validation_message": validation_result.message,
                "validation_details": validation_result.details,
                "sub_components": self.get_sub_components(),
                "performance": self.get_performance_stats()
            }
        )

    def get_metrics(self) -> Dict[str, Any]:
        """Get component-specific metrics.
        
        Returns:
            Dictionary containing component metrics
        """
        if self.platform:
            return self.platform.collect_component_metrics(self)
        
        # Fallback if platform services not initialized
        return {
            "performance": self.get_performance_stats(),
            "model_info": self.get_model_info(),
            "sub_components": self.get_sub_components(),
            "cache_stats": {
                "hits": self._cache_hits,
                "misses": self._cache_misses,
                "hit_rate": self._cache_hits / max(1, self._cache_hits + self._cache_misses)
            }
        }

    def get_capabilities(self) -> List[str]:
        """Get list of component capabilities.
        
        Returns:
            List of capability strings
        """
        capabilities = [
            "text_embedding",
            "batch_processing",
            "caching",
            "modular_architecture",
            "performance_optimization",
            "streaming_support"
        ]
        
        # Add model-specific capabilities
        if self.model:
            capabilities.append(f"model_{self.config['model']['type']}")
            
        # Add batch processor capabilities
        if self.batch_processor:
            capabilities.append(f"batch_processor_{self.config['batch_processor']['type']}")
            if self.batch_processor.supports_streaming():
                capabilities.append("streaming_processing")
        
        # Add cache capabilities
        if self.cache:
            capabilities.append(f"cache_{self.config['cache']['type']}")
        
        return capabilities
    
    def cleanup(self) -> None:
        """Clean up resources used by sub-components."""
        try:
            # Clear cache
            if hasattr(self.cache, 'clear'):
                self.cache.clear()
            
            # Clean up model cache if available
            if hasattr(self.model, 'clear_model_cache'):
                self.model.clear_model_cache()
            
            # Reset batch processor stats if available
            if hasattr(self.batch_processor, 'reset_performance_stats'):
                self.batch_processor.reset_performance_stats()
            
            logger.info("ModularEmbedder cleanup completed")
            
        except Exception as e:
            logger.warning(f"Error during cleanup: {e}")
    
    def __del__(self):
        """Cleanup on destruction."""
        try:
            self.cleanup()
        except Exception:
            pass  # Ignore errors during destruction