File size: 1,531 Bytes
5e1a30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
"""
LLM Adapters for Answer Generator.

This module provides adapters for various LLM providers, converting
between the unified interface and provider-specific formats.

Available adapters:
- OllamaAdapter: For local Ollama models
- OpenAIAdapter: For OpenAI API (GPT models)
- HuggingFaceAdapter: For HuggingFace models and Inference API
"""

from .base_adapter import (
    BaseLLMAdapter,
    RateLimitError,
    AuthenticationError,
    ModelNotFoundError
)
from .ollama_adapter import OllamaAdapter
from .huggingface_adapter import HuggingFaceAdapter
from .mock_adapter import MockLLMAdapter

# Future adapters will be imported here
# from .openai_adapter import OpenAIAdapter

__all__ = [
    'BaseLLMAdapter',
    'OllamaAdapter',
    'HuggingFaceAdapter',
    'MockLLMAdapter',
    # 'OpenAIAdapter',
    'RateLimitError',
    'AuthenticationError',
    'ModelNotFoundError'
]

# Adapter registry for easy lookup
ADAPTER_REGISTRY = {
    'ollama': OllamaAdapter,
    'huggingface': HuggingFaceAdapter,
    'mock': MockLLMAdapter,
    # 'openai': OpenAIAdapter,
}

def get_adapter_class(provider: str):
    """
    Get adapter class by provider name.
    
    Args:
        provider: Provider name (e.g., 'ollama', 'openai')
        
    Returns:
        Adapter class
        
    Raises:
        ValueError: If provider not found
    """
    if provider not in ADAPTER_REGISTRY:
        raise ValueError(f"Unknown LLM provider: {provider}. Available: {list(ADAPTER_REGISTRY.keys())}")
    return ADAPTER_REGISTRY[provider]