Spaces:
Sleeping
Sleeping
File size: 9,680 Bytes
5e1a30c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
"""
Base interfaces for Document Processor sub-components.
This module defines the abstract base classes that all Document Processor
sub-components must implement, following the modular architecture specification.
These interfaces ensure consistent behavior across different implementations
while enabling pluggable, testable components.
Architecture Reference:
- COMPONENT-2-DOCUMENT-PROCESSOR.md section 3.2 (Sub-Components)
- rag-interface-reference.md section 3.1 (Document Processing Sub-Components)
"""
from abc import ABC, abstractmethod
from typing import List, Dict, Any, Optional, Tuple
from dataclasses import dataclass, field
from pathlib import Path
# --- Data Classes ---
@dataclass
class Chunk:
"""Text chunk with position and metadata information."""
content: str
start_pos: int
end_pos: int
metadata: Dict[str, Any] = field(default_factory=dict)
def __post_init__(self):
"""Validate chunk data."""
if not self.content:
raise ValueError("Chunk content cannot be empty")
if self.start_pos < 0:
raise ValueError("Chunk start_pos must be non-negative")
if self.end_pos <= self.start_pos:
raise ValueError("Chunk end_pos must be greater than start_pos")
@dataclass
class ValidationResult:
"""Result of document validation operation."""
valid: bool
errors: List[str] = field(default_factory=list)
warnings: List[str] = field(default_factory=list)
def __post_init__(self):
"""Ensure consistency between valid flag and errors."""
if not self.valid and not self.errors:
raise ValueError("Invalid validation result must have errors")
# --- Abstract Base Classes ---
class DocumentParser(ABC):
"""
Abstract base class for document parsers.
Document parsers are responsible for extracting text and structure from
various document formats. They use the adapter pattern for external
libraries (PyMuPDF, python-docx, etc.) to provide a consistent interface.
Implementation Guidelines:
- Use adapters for external parsing libraries
- Preserve document structure and metadata
- Handle format-specific extraction requirements
- Provide graceful error handling for corrupted documents
"""
@abstractmethod
def parse(self, file_path: Path) -> Dict[str, Any]:
"""
Parse document and extract content and structure.
Args:
file_path: Path to the document file
Returns:
Dictionary containing:
- 'text': Full document text
- 'metadata': Document metadata (title, author, etc.)
- 'pages': List of page-level data (if applicable)
- 'structure': Document structure information
Raises:
ValueError: If file format is not supported
IOError: If file cannot be read or is corrupted
"""
pass
@abstractmethod
def extract_metadata(self, document: Dict[str, Any]) -> Dict[str, Any]:
"""
Extract document metadata from parsed document.
Args:
document: Parsed document data
Returns:
Dictionary containing document metadata
"""
pass
@abstractmethod
def supported_formats(self) -> List[str]:
"""
Return list of supported file extensions.
Returns:
List of file extensions (e.g., ['.pdf', '.docx'])
"""
pass
class TextChunker(ABC):
"""
Abstract base class for text chunking strategies.
Text chunkers split documents into semantic chunks suitable for retrieval.
They implement direct algorithms (no external dependencies) for various
chunking strategies like sentence-boundary, semantic, or structural chunking.
Implementation Guidelines:
- Direct implementation (no adapters for algorithms)
- Preserve semantic boundaries
- Configurable chunk size and overlap
- Quality filtering for low-value content
"""
@abstractmethod
def chunk(self, text: str, metadata: Dict[str, Any]) -> List[Chunk]:
"""
Split text into semantic chunks.
Args:
text: Input text to be chunked
metadata: Document metadata to preserve in chunks
Returns:
List of Chunk objects with content and metadata
Raises:
ValueError: If text is empty or invalid
"""
pass
@abstractmethod
def get_chunk_strategy(self) -> str:
"""
Return the chunking strategy identifier.
Returns:
Strategy name (e.g., 'sentence_boundary', 'semantic')
"""
pass
class ContentCleaner(ABC):
"""
Abstract base class for content cleaning strategies.
Content cleaners normalize and clean text content for better retrieval
and generation quality. They implement direct algorithms for various
cleaning strategies like technical content preservation, PII detection,
or language-specific normalization.
Implementation Guidelines:
- Direct implementation (no adapters for algorithms)
- Preserve important technical content
- Configurable cleaning strategies
- Handle domain-specific requirements
"""
@abstractmethod
def clean(self, text: str) -> str:
"""
Clean and normalize text content.
Args:
text: Input text to be cleaned
Returns:
Cleaned text with normalized formatting
Raises:
ValueError: If text is None or invalid
"""
pass
@abstractmethod
def normalize(self, text: str) -> str:
"""
Normalize text formatting and structure.
Args:
text: Input text to normalize
Returns:
Normalized text with consistent formatting
"""
pass
@abstractmethod
def remove_pii(self, text: str) -> Tuple[str, List[Dict[str, Any]]]:
"""
Remove personally identifiable information from text.
Args:
text: Input text potentially containing PII
Returns:
Tuple of (cleaned_text, detected_pii_entities)
Note:
This method may be a placeholder in initial implementations
and can be enhanced later with proper PII detection.
"""
pass
# --- Pipeline Interfaces ---
class ProcessingPipeline(ABC):
"""
Abstract base class for document processing pipelines.
Processing pipelines orchestrate the flow of document processing
through parsing, chunking, and cleaning stages. They coordinate
the sub-components and handle configuration-driven behavior.
"""
@abstractmethod
def process_document(self, file_path: Path) -> List['Document']:
"""
Process a document through the complete pipeline.
Args:
file_path: Path to the document file
Returns:
List of processed Document objects
Raises:
ValueError: If document format is not supported
IOError: If document cannot be processed
"""
pass
@abstractmethod
def validate_document(self, file_path: Path) -> ValidationResult:
"""
Validate document before processing.
Args:
file_path: Path to the document file
Returns:
ValidationResult with validation status and messages
"""
pass
@abstractmethod
def get_metrics(self) -> Dict[str, Any]:
"""
Get processing metrics for monitoring.
Returns:
Dictionary with processing metrics and statistics
"""
pass
# --- Configuration Interfaces ---
class ConfigurableComponent(ABC):
"""
Abstract base class for configurable components.
Components that can be configured through YAML configuration
should implement this interface to ensure consistent configuration
handling across the system.
"""
@abstractmethod
def configure(self, config: Dict[str, Any]) -> None:
"""
Configure component with provided configuration.
Args:
config: Configuration dictionary
Raises:
ValueError: If configuration is invalid
"""
pass
@abstractmethod
def get_config(self) -> Dict[str, Any]:
"""
Get current configuration.
Returns:
Current configuration dictionary
"""
pass
# --- Quality Interfaces ---
class QualityAssessment(ABC):
"""
Abstract base class for quality assessment components.
Components that assess content quality should implement this
interface to provide consistent quality metrics.
"""
@abstractmethod
def assess_quality(self, content: str) -> float:
"""
Assess the quality of content.
Args:
content: Content to assess
Returns:
Quality score between 0.0 and 1.0
"""
pass
@abstractmethod
def get_quality_factors(self) -> List[str]:
"""
Get list of quality factors considered.
Returns:
List of quality factor names
"""
pass |