File size: 17,537 Bytes
5e1a30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
"""
Sentence Boundary Chunker Implementation.

This chunker implements intelligent text splitting that preserves sentence
boundaries and semantic coherence. It refactors the existing chunking logic
from the legacy system while conforming to the TextChunker interface.

Key Features:
- ZERO mid-sentence breaks for better retrieval quality
- Configurable chunk size and overlap
- Quality filtering for low-value content
- Technical document optimizations
- Deterministic chunk IDs for reproducibility

Architecture Notes:
- Direct implementation (no adapter pattern) as per MASTER-ARCHITECTURE.md
- Preserves all existing functionality from legacy chunker
- Adds interface compliance and configuration support
"""

import re
import hashlib
from typing import List, Dict, Any
from pathlib import Path
import sys

# Add project paths for imports
project_root = Path(__file__).parent.parent.parent.parent.parent
sys.path.append(str(project_root))
sys.path.append(str(project_root / "hf_deployment" / "src"))

from ..base import TextChunker, Chunk, ConfigurableComponent, QualityAssessment
from shared_utils.document_processing.chunker import chunk_technical_text, _is_low_quality_chunk


class SentenceBoundaryChunker(TextChunker, ConfigurableComponent, QualityAssessment):
    """
    Sentence-boundary preserving text chunker.
    
    This chunker implements the proven sentence-boundary algorithm from the
    legacy system, ensuring zero mid-sentence breaks while maintaining
    optimal chunk sizes for retrieval. It includes aggressive quality
    filtering and technical content optimization.
    
    Algorithm Details:
    - Expands search window up to 50% beyond target size to find sentence boundaries
    - Prefers chunks within 70-150% of target size over fragmenting
    - Never falls back to mid-sentence breaks
    - Quality filtering removes headers, captions, and navigation elements
    
    Configuration Options:
    - chunk_size: Target chunk size in characters (default: 1400)
    - overlap: Overlap between chunks in characters (default: 200)
    - min_chunk_size: Minimum acceptable chunk size (default: 800)
    - preserve_sentences: Always preserve sentence boundaries (default: True)
    - quality_threshold: Minimum quality score for chunk inclusion (default: 0.0)
    """
    
    def __init__(self, config: Dict[str, Any] = None):
        """
        Initialize the sentence boundary chunker.
        
        Args:
            config: Configuration dictionary with chunker settings
        """
        # Default configuration
        self.config = {
            'chunk_size': 1400,
            'overlap': 200,
            'min_chunk_size': 800,
            'preserve_sentences': True,
            'quality_threshold': 0.0,
            'max_chunk_size': 2100,
            'enable_quality_filtering': True
        }
        
        # Apply provided configuration
        if config:
            self.config.update(config)
        
        # Performance and quality metrics
        self.metrics = {
            'chunks_created': 0,
            'chunks_filtered': 0,
            'total_text_processed': 0,
            'average_chunk_size': 0.0,
            'sentence_boundary_compliance': 1.0,
            'quality_distribution': {'high': 0, 'medium': 0, 'low': 0}
        }
        
        # Quality assessment factors
        self.quality_factors = [
            'content_length',
            'sentence_completeness',
            'technical_relevance',
            'structural_integrity',
            'information_density'
        ]
    
    def chunk(self, text: str, metadata: Dict[str, Any]) -> List[Chunk]:
        """
        Split text into sentence-boundary preserving chunks.
        
        Args:
            text: Input text to be chunked
            metadata: Document metadata to preserve in chunks
            
        Returns:
            List of Chunk objects with content and metadata
            
        Raises:
            ValueError: If text is empty or invalid
        """
        if not text or not isinstance(text, str):
            raise ValueError("Text must be a non-empty string")
        
        # Use the existing proven chunking algorithm
        legacy_chunks = chunk_technical_text(
            text=text,
            chunk_size=self.config['chunk_size'],
            overlap=self.config['overlap']
        )
        
        # Convert legacy chunks to new Chunk objects
        chunks = []
        for i, legacy_chunk in enumerate(legacy_chunks):
            try:
                chunk = self._create_chunk_from_legacy(legacy_chunk, metadata, i)
                
                # Apply quality filtering if enabled
                if self.config['enable_quality_filtering']:
                    quality_score = self.assess_quality(chunk.content)
                    if quality_score < self.config['quality_threshold']:
                        self.metrics['chunks_filtered'] += 1
                        continue
                
                chunks.append(chunk)
                self.metrics['chunks_created'] += 1
                
            except ValueError as e:
                # Skip invalid chunks
                self.metrics['chunks_filtered'] += 1
                continue
        
        # Update metrics
        self._update_metrics(text, chunks)
        
        return chunks
    
    def get_chunk_strategy(self) -> str:
        """
        Return the chunking strategy identifier.
        
        Returns:
            Strategy name
        """
        return "sentence_boundary"
    
    def configure(self, config: Dict[str, Any]) -> None:
        """
        Configure the chunker with provided settings.
        
        Args:
            config: Configuration dictionary
            
        Raises:
            ValueError: If configuration is invalid
        """
        # Validate configuration
        self._validate_config(config)
        
        # Update configuration
        self.config.update(config)
    
    def get_config(self) -> Dict[str, Any]:
        """
        Get current configuration.
        
        Returns:
            Current configuration dictionary
        """
        return self.config.copy()
    
    def assess_quality(self, content: str) -> float:
        """
        Assess the quality of chunk content.
        
        Args:
            content: Content to assess
            
        Returns:
            Quality score between 0.0 and 1.0
        """
        if not content:
            return 0.0
        
        # Use legacy quality assessment as base
        if _is_low_quality_chunk(content):
            return 0.1  # Very low quality but not zero
        
        quality_score = 0.0
        
        # Factor 1: Content length (30% weight)
        length_score = self._assess_content_length(content)
        quality_score += length_score * 0.3
        
        # Factor 2: Sentence completeness (25% weight)
        sentence_score = self._assess_sentence_completeness(content)
        quality_score += sentence_score * 0.25
        
        # Factor 3: Technical relevance (20% weight)
        technical_score = self._assess_technical_relevance(content)
        quality_score += technical_score * 0.2
        
        # Factor 4: Structural integrity (15% weight)
        structure_score = self._assess_structural_integrity(content)
        quality_score += structure_score * 0.15
        
        # Factor 5: Information density (10% weight)
        density_score = self._assess_information_density(content)
        quality_score += density_score * 0.1
        
        return min(1.0, quality_score)
    
    def get_quality_factors(self) -> List[str]:
        """
        Get list of quality factors considered.
        
        Returns:
            List of quality factor names
        """
        return self.quality_factors.copy()
    
    def get_metrics(self) -> Dict[str, Any]:
        """
        Get chunking metrics.
        
        Returns:
            Dictionary with chunking metrics and statistics
        """
        return self.metrics.copy()
    
    def _create_chunk_from_legacy(
        self, 
        legacy_chunk: Dict[str, Any], 
        document_metadata: Dict[str, Any],
        chunk_index: int
    ) -> Chunk:
        """
        Create a new Chunk object from legacy chunk data.
        
        Args:
            legacy_chunk: Legacy chunk data
            document_metadata: Document metadata
            chunk_index: Index of chunk in document
            
        Returns:
            New Chunk object
        """
        content = legacy_chunk.get('text', '')
        if not content:
            raise ValueError("Empty chunk content")
        
        # Create comprehensive metadata
        chunk_metadata = {
            # Legacy chunk information
            'chunk_id': legacy_chunk.get('chunk_id', f'chunk_{chunk_index}'),
            'word_count': legacy_chunk.get('word_count', len(content.split())),
            'sentence_complete': legacy_chunk.get('sentence_complete', True),
            
            # Document context
            'document_source': document_metadata.get('source', ''),
            'document_title': document_metadata.get('title', ''),
            'document_author': document_metadata.get('author', ''),
            'document_page_count': document_metadata.get('page_count', 0),
            
            # Chunking metadata
            'chunking_strategy': self.get_chunk_strategy(),
            'chunk_size_config': self.config['chunk_size'],
            'overlap_config': self.config['overlap'],
            'quality_score': self.assess_quality(content),
            
            # Processing metadata
            'chunk_index': chunk_index,
            'creation_timestamp': document_metadata.get('processing_timestamp'),
            'processor_version': '1.0',
            
            # Preserve original document metadata
            **{k: v for k, v in document_metadata.items() if k not in [
                'source', 'title', 'author', 'page_count', 'processing_timestamp'
            ]}
        }
        
        return Chunk(
            content=content,
            start_pos=legacy_chunk.get('start_char', 0),
            end_pos=legacy_chunk.get('end_char', len(content)),
            metadata=chunk_metadata
        )
    
    def _validate_config(self, config: Dict[str, Any]) -> None:
        """
        Validate configuration parameters.
        
        Args:
            config: Configuration to validate
            
        Raises:
            ValueError: If configuration is invalid
        """
        if 'chunk_size' in config:
            if not isinstance(config['chunk_size'], int) or config['chunk_size'] <= 0:
                raise ValueError("chunk_size must be a positive integer")
        
        if 'overlap' in config:
            if not isinstance(config['overlap'], int) or config['overlap'] < 0:
                raise ValueError("overlap must be a non-negative integer")
        
        if 'min_chunk_size' in config:
            if not isinstance(config['min_chunk_size'], int) or config['min_chunk_size'] <= 0:
                raise ValueError("min_chunk_size must be a positive integer")
        
        if 'quality_threshold' in config:
            if not isinstance(config['quality_threshold'], (int, float)) or not 0 <= config['quality_threshold'] <= 1:
                raise ValueError("quality_threshold must be a float between 0 and 1")
        
        # Validate relationships
        chunk_size = config.get('chunk_size', self.config['chunk_size'])
        overlap = config.get('overlap', self.config['overlap'])
        min_chunk_size = config.get('min_chunk_size', self.config['min_chunk_size'])
        
        if overlap >= chunk_size:
            raise ValueError("overlap must be less than chunk_size")
        
        if min_chunk_size > chunk_size:
            raise ValueError("min_chunk_size must be less than or equal to chunk_size")
    
    def _update_metrics(self, text: str, chunks: List[Chunk]) -> None:
        """
        Update chunking metrics.
        
        Args:
            text: Original text
            chunks: Created chunks
        """
        self.metrics['total_text_processed'] += len(text)
        
        if chunks:
            chunk_sizes = [len(chunk.content) for chunk in chunks]
            self.metrics['average_chunk_size'] = sum(chunk_sizes) / len(chunk_sizes)
            
            # Update quality distribution
            for chunk in chunks:
                quality_score = chunk.metadata.get('quality_score', 0.0)
                if quality_score >= 0.8:
                    self.metrics['quality_distribution']['high'] += 1
                elif quality_score >= 0.5:
                    self.metrics['quality_distribution']['medium'] += 1
                else:
                    self.metrics['quality_distribution']['low'] += 1
    
    def _assess_content_length(self, content: str) -> float:
        """
        Assess content length appropriateness.
        
        Args:
            content: Content to assess
            
        Returns:
            Length quality score (0.0 to 1.0)
        """
        length = len(content)
        target_size = self.config['chunk_size']
        min_size = self.config['min_chunk_size']
        
        if length < min_size:
            return 0.3  # Too short
        elif length > target_size * 1.5:
            return 0.7  # Too long but acceptable
        else:
            # Optimal range
            return 1.0
    
    def _assess_sentence_completeness(self, content: str) -> float:
        """
        Assess sentence completeness.
        
        Args:
            content: Content to assess
            
        Returns:
            Sentence completeness score (0.0 to 1.0)
        """
        # Check if content ends with sentence terminators
        terminators = ['.', '!', '?', ':', ';']
        if any(content.rstrip().endswith(term) for term in terminators):
            return 1.0
        
        # Check if it's a complete thought (has subject and verb patterns)
        words = content.split()
        if len(words) < 3:
            return 0.3
        
        # Simple heuristic: if it has common sentence patterns
        common_patterns = ['the', 'is', 'are', 'was', 'were', 'has', 'have', 'will', 'can', 'this', 'that']
        pattern_count = sum(1 for word in words if word.lower() in common_patterns)
        
        return min(1.0, pattern_count / 5.0)
    
    def _assess_technical_relevance(self, content: str) -> float:
        """
        Assess technical content relevance.
        
        Args:
            content: Content to assess
            
        Returns:
            Technical relevance score (0.0 to 1.0)
        """
        content_lower = content.lower()
        
        # Technical indicators
        technical_terms = [
            'algorithm', 'implementation', 'system', 'method', 'process',
            'function', 'parameter', 'variable', 'configuration', 'protocol',
            'architecture', 'design', 'specification', 'interface', 'module',
            'register', 'memory', 'processor', 'instruction', 'operation'
        ]
        
        term_count = sum(1 for term in technical_terms if term in content_lower)
        
        # Code indicators
        code_indicators = ['()', '[]', '{', '}', '==', '!=', '<=', '>=', '->', '=>']
        code_count = sum(1 for indicator in code_indicators if indicator in content)
        
        # Combine scores
        tech_score = min(1.0, term_count / 10.0)
        code_score = min(1.0, code_count / 5.0)
        
        return max(tech_score, code_score)
    
    def _assess_structural_integrity(self, content: str) -> float:
        """
        Assess structural integrity of content.
        
        Args:
            content: Content to assess
            
        Returns:
            Structural integrity score (0.0 to 1.0)
        """
        # Check for proper capitalization
        sentences = re.split(r'[.!?]+', content)
        properly_capitalized = sum(1 for s in sentences if s.strip() and s.strip()[0].isupper())
        
        if not sentences:
            return 0.0
        
        capitalization_score = properly_capitalized / len(sentences)
        
        # Check for balanced parentheses/brackets
        balance_score = 1.0
        for open_char, close_char in [('(', ')'), ('[', ']'), ('{', '}')]:
            if content.count(open_char) != content.count(close_char):
                balance_score -= 0.2
        
        return max(0.0, (capitalization_score + balance_score) / 2.0)
    
    def _assess_information_density(self, content: str) -> float:
        """
        Assess information density of content.
        
        Args:
            content: Content to assess
            
        Returns:
            Information density score (0.0 to 1.0)
        """
        words = content.split()
        if len(words) < 5:
            return 0.3
        
        # Calculate unique word ratio
        unique_words = set(word.lower() for word in words)
        unique_ratio = len(unique_words) / len(words)
        
        # Calculate average word length (longer words often more informative)
        avg_word_length = sum(len(word) for word in words) / len(words)
        length_score = min(1.0, avg_word_length / 6.0)  # Normalize to 6 characters
        
        # Combine scores
        return (unique_ratio + length_score) / 2.0